Real-Time Variable Rate Spraying in Orchards and Vineyards: A Review

  • Sachin Vilas Wandkar
  • Yogesh Chandra Bhatt
  • H. K. Jain
  • Sachin M. Nalawade
  • Shashikant G. Pawar
Review Paper


Effective and efficient use of pesticides in the orchards is of concern since many years. With the conventional constant rate sprayers, equal dose of pesticide is applied to each tree. Since, there is great variation in size and shape of each tree in the orchard, trees gets either oversprayed or undersprayed. Real-time variable rate spraying technology offers pesticide application in accordance with tree size. With the help of suitable sensors, tree characteristics such as canopy volume, foliage density, etc. can be acquired and with the micro-processing unit coupled with proper algorithm, flow of electronic proportional valves can be controlled thus, controlling the flow rate of nozzles according to tree characteristics. Also, sensors can help in the detection of spaces in-between trees which allows to control the spray in spaces. Variable rate spraying helps in achieving precision in spraying operation especially inside orchards. This paper reviews the real-time variable rate spraying technology and efforts made by the various researchers for real-time variable application in the orchards and vineyards.


Variable rate spraying Pesticides Sensor Orchard LIDAR 



Authors sincerely thank the Department of Science and Technology, Government of India for providing support for this work through INSPIRE Fellowship Program.


  1. 1.
    P. Balsari, G. Doruchowski, P. Marucco, M. Tamagnone, J. Van de Zonde, M. Wenneker, A system adjusting the spray application to the target characteristics. Agric. Eng. Int. CIGR E J. X, Manuscript ALNARP 08 002 (2008)Google Scholar
  2. 2.
    Y. Chen, H. Zhu, H.E. Ozkan, Development of a variable rate sprayer with laser scanning sensor to synchronize spray outputs to tree structures. Trans. ASABE 55(3), 773–781 (2012)CrossRefGoogle Scholar
  3. 3.
    Y. Chen, H.E. Ozkan, H. Zhu, R.C. Derksen, C.R. Krause, Spray deposition inside tree canopies from a newly developed variable-rate air-assisted sprayer. Trans. ASABE 56(6), 1263–1272 (2013)Google Scholar
  4. 4.
    Y. Chen, H. Zhu, H.E. Ozkan, R.C. Derksen, C.R. Krause, Spray drift and off-target loss reductions with a precision air-assisted sprayer. Trans. ASABE 56(6), 1273–1281 (2013)Google Scholar
  5. 5.
    R.C. Derksen, H. Zhu, R.D. Fox, R.D. Brazee, C.R. Krause, Coverage and drift produced by air induction and conventional hydraulic nozzles used for orchard applications. Trans. ASABE 50(5), 1493–1501 (2007)CrossRefGoogle Scholar
  6. 6.
    A. Escola, J.R. Rossel-Polo, S. Planas, E. Gil, J. Pomar, F. Camp, J. Llorens, F. Solanelles, Variable rate sprayer. Part 1—orchard prototype: design, implementation and validation. Comput. Electron. Agric. 95, 122–135 (2013)CrossRefGoogle Scholar
  7. 7.
    M. Farooq, M. Salyani, Spray penetration into the citrus tree canopy from two air-carrier sprayers. Trans. ASAE 45(5), 1287–1293 (2002)CrossRefGoogle Scholar
  8. 8.
    R.D. Fox, D.L. Reichard, R.D. Brazee, C.R. Krause, F.R. Hall, Downwind residues from spraying a semi-dwarf apple orchard. Trans. ASAE 36(2), 333–340 (1993)CrossRefGoogle Scholar
  9. 9.
    D.K. Giles, M.J. Delwiche, R.B. Dodd, Electronic measurement of tree canopy volume. Trans. ASAE 31(1), 264–272 (1988)CrossRefGoogle Scholar
  10. 10.
    E. Gil, A. Escola, J.R. Rosell, S. Planas, L. Val, Variable rate application of plant protection products in vineyard using ultrasonic sensors. Crop Prot. 26(8), 1287–1297 (2007)CrossRefGoogle Scholar
  11. 11.
    D.K. Giles, M.J. Delwiche, R.B. Dodd, Sprayer control by sensing orchards crop characteristics: orchard architecture and spray liquid saving. J. Agric. Eng. Res. 43(4), 271–289 (1989)CrossRefGoogle Scholar
  12. 12.
    E. Gil, J. Llorens, J. Llop, X. Fabregas, A. Escola, J.R. Rossel-Polo, Variable rate sprayer. Part 2—vineyard protorype: design, implementation and validation. Comput. Electron. Agric. 95, 136–150 (2013)CrossRefGoogle Scholar
  13. 13.
    W.C. Hoffmann, M. Salyani, Spray deposition on citrus canopies under different meteorological conditions. Trans. ASAE 39(1), 17–22 (1996)CrossRefGoogle Scholar
  14. 14.
    H.Y. Jeon, H. Zhu, R.C. Derksen, H.E. Ozkan, C.R. Krause, Evaluation of ultrasonic sensor for variable-rate spray applications. Comput. Electron. Agric. 75(1), 213–221 (2011)CrossRefGoogle Scholar
  15. 15.
    H.Y. Jeon, H. Zhu, R.C. Derksen, H.E. Ozkan, C.R. Krause, R.D. Fox, Performance evaluation of a newly developed variable rate sprayer for nursery liner applications. Trans. ASABE 54(6), 1997–2007 (2011)CrossRefGoogle Scholar
  16. 16.
    H.Y. Jeon, H. Zhu, Development of variable rate sprayer for nursery liner applications. Trans. ASABE 55(1), 303–312 (2012)CrossRefGoogle Scholar
  17. 17.
    L.R. Khot, R. Ehsani, G. Albrigo, P. Larbi, A. Landers, J. Campoy, C. Wellington, Air-assisted sprayer adapted for precision horticulture: spray patterns and deposition assessments in small-sized citrus canopies. Biosys. Eng. 113, 76–85 (2012)CrossRefGoogle Scholar
  18. 18.
    T.L. Ladd, D.L. Reichard, D.L. Collins, C.R. Buriff, An automatic intermittent sprayer: a new approach to the insecticidal control of horticultural insect pests. J. Econ. Entomol. 71, 789–792 (1978)CrossRefGoogle Scholar
  19. 19.
    T.L. Ladd, D.L. Reichard, Photoelectrically operated intermittent sprayers for insecticidal control of horticultural pests. J. Econ. Entomol. 75, 525–528 (1980)CrossRefGoogle Scholar
  20. 20.
    A. Landers, M. Farooq, Reducing spray drift from orchards: a successful case study. N. Y. Fruit Q. 12(3), 23–26 (2004)Google Scholar
  21. 21.
    A.J. Landers, Spray drift management—ways to improve deposition, drift reduction and sprayer output. Am. Fruit Grow. 199(2), 36–38 (1999)Google Scholar
  22. 22.
    A. J. Landers, The answer is blowing in the wind. in Aspects of Applied Biology, International advances in pesticide application, vol 66 (2002), pp. 177–184Google Scholar
  23. 23.
    K. Lee, R. Ehsani, A laser-scanning system for quantification of tree geometric characteristics. ASABE paper no. 083980, presented at 2008 ASABE Annual International Meeting, Rhode Island, USA (2008)Google Scholar
  24. 24.
    H. Liu, Z. Zhu, Y. Shen, Y. Chen, H.E. Ozkan, Development of digital flow control system for multi-channel variable-rate sprayers. Trans. ASABE 57(1), 273–281 (2014)Google Scholar
  25. 25.
    J. Llorens, E. Gil, J. Llop, A. Escola, Variable rate dosing in precision viniculture: use of electronic device to improve application efficiency. Crop Prot. 29(3), 239–248 (2010)CrossRefGoogle Scholar
  26. 26.
    J. Llorens, E. Gil, J. Llop, A. Escola, Ultrasonic and lidar sensors for electronic canopy characterization in vineyards: advances to improve pesticide application methods. Sensors 11, 2177–2194 (2011)CrossRefGoogle Scholar
  27. 27.
    D. Maski, D. Durairaj, Effects of electrode voltage, liquid flow rate, and liquid properties on spray chargeability of an air-assisted electrostatic-induction spray-charging system. J. Electrostat. 68, 152–158 (2010)CrossRefGoogle Scholar
  28. 28.
    E. Molto, B. Martin, A. Gutierrez, Design and testing of an automatic machine for spraying at a constant distance from the tree canopy. J. Agric. Eng. Res. 77(4), 379–384 (2000)CrossRefGoogle Scholar
  29. 29.
    E. Molto, B. Martin, A. Gutierrez, Pesticide loss reduction by automatic adoption of spraying on globular trees. J. Agric. Eng. Res. 78(1), 35–41 (2001)CrossRefGoogle Scholar
  30. 30.
    M. Nilsson, Estimation of tree heights and stand volume using an airborne lidar system. Remote Sens. Environ. 56, 1–7 (1996)CrossRefGoogle Scholar
  31. 31.
    A. Osterman, T. Godesa, M. Hocevar, B. Sirok, M. Stopar, Real-time positioning algorithm for variable-geometry air-assisted sprayer. Comput. Electron. Agric. 98, 175–182 (2013)CrossRefGoogle Scholar
  32. 32.
    J. Palacin, T. Palleja, M. Tresanchez, R. Sanz, J. Llorens, M. Ribes-Dasi, J. Masip, J. Arno, A. Escola, J.R. Rossel, Real-time tree foliage surface estimation using a ground laser scanner. IEEE Trans. Instrum. Meas. 56(4), 1377–1383 (2007)CrossRefGoogle Scholar
  33. 33.
    G. Pergher, R. Gubiani, G. Tonetto, Foliar deposition and pesticide losses from three air-assisted sprayers in a hedgerow vineyard. Crop Prot. 16(1), 25–33 (1997)CrossRefGoogle Scholar
  34. 34.
    D.L. Reichard, T.L. Ladd, An automatic intermittent sprayer. Trans. ASAE 24(4), 893–896 (1981)CrossRefGoogle Scholar
  35. 35.
    D.L. Reichard, B.R. Tennes, C.L. Burton, G.K. Brown, Experimetal orchard sprayer. Trans. ASAE 25(1), 33–37 (1982)CrossRefGoogle Scholar
  36. 36.
    J.C. Ritchie, D.L. Evans, D. Jacobs, M.A. Weltz, Measuring canopy structure with an airborne laser altimeter. Trans. ASAE 36(4), 1235–1238 (1993)CrossRefGoogle Scholar
  37. 37.
    J.R. Rossel-Polo, R. Sanz, J. Llorens, J. Arno, A. Escola, M. Ribes-Dasi, J. Masip, F. Camp, F. Gracia, F. Solanelles, T. Palleja, L. Val, S. Planas, E. Gil, J. Palacin, A tractor-operated scanning LIDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: a comparison with conventional destructive measurements. Biosys. Eng. 102, 128–134 (2009)CrossRefGoogle Scholar
  38. 38.
    M. Salyani, M. Farooq, R.D. Sweeb, Spray deposition and mass balance in citrus orchard applications. Trans. ASABE 50(6), 1963–1969 (2007)CrossRefGoogle Scholar
  39. 39.
    F. Solanelles, A. Escola, S. Planas, J. Rosell, F. Camp, F. Gracia, An electronic control system for pesticide application proportional to the canopy width of tree crops. Biosys. Eng. 95(4), 473–481 (2006)CrossRefGoogle Scholar
  40. 40.
    S.D. Tumbo, M. Salyani, J.D. Whitney, T.A. Wheaton, W.M. Miller, Investigation of laser and ultrasonic ranging sensors for measurements of citrus canopy volume. Appl. Eng. Agric. 18(3), 367–372 (2002)CrossRefGoogle Scholar
  41. 41.
    F. Van den Berg, R. Kubiak, W.G. Benjey, M.S. Majewsjki, S.R. Yates, G.L. Reeves, J.H. Smelt, A.M.A. Van der Linden, Emission of pesticides in the air. In “Fate of Pesticides in the Atmosphere, Implications for Environmental Risk Assessment”, Academic Publishers, Dordrecht/Boston/London. Water Air Soil Pollut. 115, 195–218 (1999)CrossRefGoogle Scholar
  42. 42.
    J. Wei, M. Salyani, Development of a laser scanner for measuring tree canopy characteristics: phase 1. Prototype development. Trans. ASAE 47(6), 2101–2107 (2004)CrossRefGoogle Scholar
  43. 43.
    J. Wei, M. Salyani, Development of a laser scanner for measuring tree canopy characteristics: phase 2. Foliage density measurement. Trans. ASAE 48(4), 1595–1601 (2005)CrossRefGoogle Scholar
  44. 44.
    Q.U. Zamahn, M. Salyani, Effects of foliage density and ground speed on ultrasonic measurement of citrus tree volume. Appl. Eng. Agric. 20(2), 1–6 (2004)Google Scholar
  45. 45.
    H. Zhu, R.H. Zondag, R.C. Derksen, M. Reding, C.R. Krause, Influence of spray volume on spray deposition and coverage within nursery trees. J. Environ. Hortic. 26(1), 51–57 (2008)Google Scholar

Copyright information

© The Institution of Engineers (India) 2018

Authors and Affiliations

  • Sachin Vilas Wandkar
    • 1
  • Yogesh Chandra Bhatt
    • 1
  • H. K. Jain
    • 2
  • Sachin M. Nalawade
    • 3
  • Shashikant G. Pawar
    • 1
  1. 1.Department of Farm Machinery and Power Engineering, College of Technology and EngineeringMaharana Pratap University of Agriculture and TechnologyUdaipurIndia
  2. 2.Department of Agricultural Statistics, Rajasthan College of AgricultureMaharana Pratap University of Agriculture and TechnologyUdaipurIndia
  3. 3.Department of Farm Machinery and Power, Dr. A. S. College of Agricultural EngineeringMahatma Phule Krishi VidyapeethRahuriIndia

Personalised recommendations