Advertisement

State-of-the-Art Review on the Characteristics of Surfactants and Foam from Foam Concrete Perspective

  • Sritam Swapnadarshi Sahu
  • Indu Siva Ranjani Gandhi
  • Selija Khwairakpam
Review Paper
  • 179 Downloads

Abstract

Foam concrete finds application in many areas, generally as a function of its relatively lightweight and its beneficial properties in terms of reduction in dead load on structure, excellent thermal insulation and contribution to energy conservation. For production of foam concrete with desired properties, stable and good quality foam is the key requirement. It is to be noted that the selection of surfactant and foam production parameters play a vital role in the properties of foam which in turn affects the properties of foam concrete. However, the literature available on the influence of characteristics of foaming agent and foam on the properties of foam concrete are rather limited. Hence, a more systematic research is needed in this direction. The focus of this work is to provide a review on characteristics of surfactant (foaming agent) and foam for use in foam concrete production.

Keywords

Foam concrete Surfactant Critical micelle concentration Viscosity Surfactant concentration 

References

  1. 1.
    N. Narayanan, K. Ramamurthy, Structure and properties of aerated concrete: a review. Cem. Concr. Compos. 22, 321–329 (2000)CrossRefGoogle Scholar
  2. 2.
    C. Bing, W. Zhen, L. Ning, Experimental research on properties of high-strength foamed concrete. J. Mater. Civ. Eng. 24, 113–118 (2012)CrossRefGoogle Scholar
  3. 3.
    K. Ramamurthy, E.K. Nambiar, G.I.S. Ranjani, A classification of studies on properties of foam concrete. Cem. Concr. Compos. 31, 388–396 (2009)CrossRefGoogle Scholar
  4. 4.
    S. VanDeijk, Foam concrete. Concr. 25, 49–53 (1919)Google Scholar
  5. 5.
    D. Aldridge, Introduction to foamed concrete: What, why, how?, in Proceedings of the International Conference on Use of Foamed Concrete in Construction, University of Dundee, Dundee (2005), pp. 1–14Google Scholar
  6. 6.
    R.A. Barnes, Foamed concrete: application and specification, in Proceedings of the International Conference on Concrete Construction, Kingston University, London (2009), pp. 3–9Google Scholar
  7. 7.
    Q. Xin, Research status of foamed concrete. Int. J. Multidisc. Res. Dev. 3(4), 328–330 (2016)Google Scholar
  8. 8.
    D. Wimpenny, Some aspects of the design and production of foamed concrete, in Proceedings of the International Conference on Appropriate Concrete Technology, University of Dundee, Dundee (1996), pp. 243–252Google Scholar
  9. 9.
    L. Cox, Major Road and Bridge Projects With Foam Concrete, in Proceedings of the International Conference on Use of Foamed Concrete in Construction, University of Dundee, Dundee (2005), pp. 106–112Google Scholar
  10. 10.
    P. Ranmale, Feasibility study on conventional concrete and cellular light weight concrete (foamed concrete). Int. J. Innov. Eng. Res. Tech. 3(11), 36–41 (2016)Google Scholar
  11. 11.
    E. Kearsley, P. Wainwright, The effect of high fly ash content on the compressive strength of foamed concrete. Cem. Concr. Res. 31, 105–112 (2001)CrossRefGoogle Scholar
  12. 12.
    Y. Amran, N. Farzadnia, A. Ali, Properties and applications of foamed concrete; a review. Constr. Build. Mater. 101, 990–1005 (2015)CrossRefGoogle Scholar
  13. 13.
    M.R. Jones, A. McCarthy, Behaviour and assessment of foamed concrete for construction applications, in Proceedings of the International Conference on Use of Foamed Concrete in Construction, University of Dundee, Dundee (2005), pp. 61–88Google Scholar
  14. 14.
    P. Ghosh, Colloid and Interface Science (PHI Learning Pvt. Ltd., New Delhi, 2009)Google Scholar
  15. 15.
    M.R. Porter, Handbook of Surfactants, 2nd edn. (Chapman & Hall, London, 1994)CrossRefGoogle Scholar
  16. 16.
    M.J. Rosen, Surfactants and Interfacial Phenomena, 3rd edn. (Wiley, Hoboken, 2004)CrossRefGoogle Scholar
  17. 17.
    IS 7597, Surface Active Agents Glossary of terms (Bureau of Indian Standards, New Delhi, 2001)Google Scholar
  18. 18.
    H. Gecol, in The Basic Theory, ed. by R.J. Farn (Blackwell Publishing Ltd, Oxford, 2006), pp. 24–45Google Scholar
  19. 19.
    R. Liu, R. Dannenfelser, S. Li, in Micellization and Drug Solubility Enhancement, ed. by R. Liu (CRC Press, New York, 2008), pp. 255–306Google Scholar
  20. 20.
    A. Mehreteab, in Anionic-Cationic Surfactant Mixtures, ed. by G. Broze (Marcel Dekker Inc, New York, 1999), pp. 133–155Google Scholar
  21. 21.
    M. Sharma, D. Shah, in Use of Surfactants Oil Recovery, ed. by E.C. Donaldson, G.V. Chilingarian, T.F. Yen (Elsevier, New York, 1989), pp. 255–316Google Scholar
  22. 22.
    D. Myers, Surfaces, Interfaces and Colloids: Principles and Applications, 2nd edn. (Wiley, New York, 1999)CrossRefGoogle Scholar
  23. 23.
    R. Pugh, Foaming, foam films, antifoaming and defoaming. Adv. Colloid Interface Sci. 64, 67–142 (1996)CrossRefGoogle Scholar
  24. 24.
    M. Siva, K. Ramamurthy, R. Dhamodharan, Sodium salt admixtures for enhancing the foaming characteristics of sodium lauryl sulphate. Cem. Concr. Compos. 57, 133–141 (2015)CrossRefGoogle Scholar
  25. 25.
    J.W. Moore, C.L. Stanitski, P.C. Jurs, Principles of Chemistry: The Molecular Science, 1st edn. (Brooks/Cole Cengage Learning, Hampshire, 2010)Google Scholar
  26. 26.
    M. Porter, in Anionic Detergents, ed. by F.D. Gunstone, F.B. Padley (Marcel Dekker Inc., New York, 1997), pp. 579–608Google Scholar
  27. 27.
    H. Shehata, A. Elwahab, A. Hafiz, I. Aiad, M. Hegazy, Syntheses and characterization of some cationic surfactants. J. Surfact. Deterg. 11, 139–144 (2008)CrossRefGoogle Scholar
  28. 28.
    R. Valore, Cellular concretes Part 1: composition and methods of preparation. J. ACI. 50, 773–795 (1954)Google Scholar
  29. 29.
    M. Siva, K. Ramamurthy, R. Dhamodharan, Development of a green foaming agent and its performance evaluation. Cem. Concr. Compos. 80, 245–257 (2017)CrossRefGoogle Scholar
  30. 30.
    W. Oleszek, A. Hamed, in Saponin-Based Surfactants, ed. by M. Kjellin, I. Johansson (Wiley, Oxford, 2010), pp. 239–249Google Scholar
  31. 31.
    B. Singh, J. Singh, N. Singh, A. Kaur, Saponins in pulses and their health promoting activities: a review. Food Chem. 233, 540–549 (2017)CrossRefGoogle Scholar
  32. 32.
    D. Lin, Q. Zhao, G. Hou, J. Zhao, J. Han, Preparation of novel foaming agent and its application in foam concrete. Adv. Mater. Res. 785, 305–307 (2013)CrossRefGoogle Scholar
  33. 33.
    G. Brodeur, E. Yau, K. Badal, J. Collier, K. Ramachandran, S. Ramakrishnan, Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. 2011, 1–17 (2011)CrossRefGoogle Scholar
  34. 34.
    V. Pasupuleti, S. Braun, in State of the Art Manufacturing of Protein Hydrolysates, ed. by V.K. Pasupuleti, A.L. Demain (Springer, New York, 2010), pp. 11–32CrossRefGoogle Scholar
  35. 35.
    M. Zhang, H. Zhao, Q. Zhang, The production of protein foaming agent from baijiu vinasse. Appl. Mech. Mater. 448, 688–692 (2014)Google Scholar
  36. 36.
    K. Hill, in Surfactants Based on Carbohydrates and Proteins for Consumer Products and Technical Applications, ed. by M. Kjellin, I. Johansson (Wiley, Oxford, 2010), pp. 65–84Google Scholar
  37. 37.
    K.C. Brady, G.R.A. Watts, M.R. Jones, Specification for foamed concrete. Application guide AG 39, (Project Report-PR/IS/40/01) TRL Limited, (2001)Google Scholar
  38. 38.
    D. Brannan, in Preservation of Personal Care Products, ed. by F.F. Morpeth (Springer, London, 1995), pp. 147–184Google Scholar
  39. 39.
    E. Dickinson, Properties of emulsions stabilized with milk proteins: overview of some recent developments. J. Dairy Sci. 80(10), 2607–2619 (1997)CrossRefGoogle Scholar
  40. 40.
    A. Laukaitis, R. Zurauskas, J. Kerien, The effect of foam polystyrene granules on cement composite properties. Cem. Concr. Compos. 27, 41–47 (2005)CrossRefGoogle Scholar
  41. 41.
    S. De, S. Malik, A. Ghosh, R. Saha, B. Saha, A review on natural surfactants. RSC Adv. 5, 65757–65767 (2015)CrossRefGoogle Scholar
  42. 42.
    D. Panesar, Cellular concrete properties and the effect of synthetic and protein foaming agents. Constr. Build. Mater. 44, 575–584 (2013)CrossRefGoogle Scholar
  43. 43.
    M. Jones, Foamed concrete for structural use, in Proceedings of One Day Seminar on Foamed Concrete: Applications and Latest Technological Developments, Loughborough University, Loughborough (2001), pp. 28–60Google Scholar
  44. 44.
    J. Kim, J. Jeong, Influence of foaming agents on the properties of foamed concretes having various densities. J. Korea Inst. Build. Constr. 12(1), 22–30 (2012)CrossRefGoogle Scholar
  45. 45.
    K. Holmberg, Natural surfactants. Curr. Opin. Colloid Interface Sci. 6, 148–159 (2001)CrossRefGoogle Scholar
  46. 46.
    G.I.S. Ranjani, K. Ramamurthy, Analysis of the foam generated using surfactant sodium lauryl sulfate. Int. J. Concr. Struct. Mater. 4(1), 55–62 (2010)CrossRefGoogle Scholar
  47. 47.
    M. Jones, A. McCarthy, Heat of hydration in foamed concrete: effect of mix constituents and plastic density. Cem. Concr. Res. 36, 1032–1041 (2006)CrossRefGoogle Scholar
  48. 48.
    D. Myers, Surfactant Science and Technology, 3rd edn. (Wiley, New Jersey, 2006)Google Scholar
  49. 49.
    M. Amaral, J. Neves, A. Oliveira, M. Bahia, Foamability of detergent solutions prepared with different types of surfactants and waters. J. Surfact. Deterg. 11, 275–278 (2008)CrossRefGoogle Scholar
  50. 50.
    A. Bera, K. Ojha, A. Mandal, Synergistic effect of mixed surfactant systems on foam behavior and surface tension. J. Surfact. Deterg. 16, 621–630 (2013)CrossRefGoogle Scholar
  51. 51.
    Z. Ospanova, K. Musabekov, M. Asadov, An effect of surfactants of different nature on stabilization of foaming systems containing polyvinyl alcohol. Russ. J. Appl. Chem. 87(3), 355–359 (2014)CrossRefGoogle Scholar
  52. 52.
    D. Myers, in Physical Properties of Surfactants Used in Cosmetics, ed. by M.M. Rieger, L.D. Rhein (CRC Press, Boca Raton, 1997), pp. 29–82Google Scholar
  53. 53.
    M. Malik, M. Hashim, F. Nabi, S. Thabaiti, Z. Khan, Anti-corrosion ability of surfactants: a review. Int. J. Electrochem. Sci. 6, 1927–1948 (2011)Google Scholar
  54. 54.
    T. Tadros, Formulation of Disperse Systems: Science and Technology (Wiley, Germany, 2014)CrossRefGoogle Scholar
  55. 55.
    G. Samson, A. Mardele, C. Lanos, Thermal and mechanical properties of gypsum–cement foam concrete: effects of surfactant. Eur. J. Environ. Civ. Eng. 21, 1–20 (2016)CrossRefGoogle Scholar
  56. 56.
    B. Qin, Y. Lu, F. Li, Y. Jia, C. Zhu, Q. Shi, Preparation and stability of inorganic solidified foam for preventing coal fires. Adv. Mater. Sci. Eng. 2014, 1–10 (2014)CrossRefGoogle Scholar
  57. 57.
    E. Nambiar, K. Ramamurthy, Air-void characterisation of foam concrete. Cem. Concr. Res. 37, 221–230 (2007)CrossRefGoogle Scholar
  58. 58.
    J. Zhang, Z. Wang, J. Liu, S. Chen, G. Liu, Self-Assembled Nanostructures (Springer, New York, 2003)Google Scholar
  59. 59.
    B. Kronberg, K. Holmberg, B. Lindman, Surface Chemistry of Surfactants and Polymers, 1st edn. (Wiley, Oxford, 2014)Google Scholar
  60. 60.
    T. Yokoi, H. Yoshitake, T. Tatsumi, Synthesis of mesoporous silica by using anionic surfactant. Stud. Surf. Sci. Catal. 154, 519–527 (2004)CrossRefGoogle Scholar
  61. 61.
    J. Narayanan, K. Ramamurthy, Identification of set-accelerator for enhancing the productivity of foam concrete block manufacture. Constr. Build. Mater. 37, 144–152 (2012)CrossRefGoogle Scholar
  62. 62.
    D. Corr, J. Lebourgeois, P. Monteiro, S. Bastacky, E. Gartner, Air void morphology in fresh cement pastes. Cem. Concr. Res. 32, 1025–1031 (2002)CrossRefGoogle Scholar
  63. 63.
    G.I.S. Ranjani, K. Ramamurthy, Relative assessment of density and stability of foam produced with four synthetic surfactants. Mater. Struct. 43, 1317–1325 (2010)CrossRefGoogle Scholar
  64. 64.
    H. Azira, A. Tazerouti, J. Canselier, Study of foaming properties and effect of the isomeric distribution of some anionic surfactants. J. Surfact. Deterg. 11, 279–286 (2008)CrossRefGoogle Scholar
  65. 65.
    B. Karthikeyan, R. Selvaraj, S. Saravanan, Mechanical properties of foam concrete. Int. J. Earth Sci. Eng. 8(2), 115–119 (2015)Google Scholar
  66. 66.
    V. Seredyuk, E. Alami, M. Nyden, K. Holmberg, A. Peresypkin, F. Menger, Micellization and adsorption properties of novel zwitterionic surfactants. Langmuir 17(17), 5160–5165 (2001)CrossRefGoogle Scholar
  67. 67.
    I. Effendy, H. Maibach, Detergent and skin irritation. Clin. Dermatol. 14, 15–21 (1996)CrossRefGoogle Scholar
  68. 68.
    K. Staszak, D. Wieczorek, K. Michocka, Effect of sodium chloride on the surface and wetting properties of aqueous solutions of cocamidopropyl betaine. J. Surfact. Deterg. 18, 321–328 (2015)CrossRefGoogle Scholar
  69. 69.
    T. Knepper, J. Berna, in Surfactants: Properties, Production, and Environmental Aspects, ed. by D. Barcelo (Elsevier, New York, 2003), pp. 1–49Google Scholar
  70. 70.
    X. Wei, H. Liu, Relationship between foaming properties and solution properties of protein/nonionic surfactant mixtures. J. Surfact. Deterg. 3(4), 491–495 (2000)CrossRefGoogle Scholar
  71. 71.
    L. Schramm, D. Marangoni, in Surfactants and Their Solutions: Basic Pinciples, ed. by L.L. Schramm (Cambridge University Press, Cambridge, 2000), pp. 3–50Google Scholar
  72. 72.
    K. Lunkenheimer, K. Malysa, Simple and generally applicable method of determination and evaluation of foam properties. J. Surfact. Deterg. 6(1), 69–74 (2003)CrossRefGoogle Scholar
  73. 73.
    R. Wang, Y. Li, Y. Li, Interaction between cationic and anionic surfactants: Detergency and foaming properties of mixed systems. J. Surfact. Deterg. 17, 881–888 (2014)CrossRefGoogle Scholar
  74. 74.
    M. Khimani, S. Vora, Effect of inorganic additives on a conventional anionic–nonionic mixed surfactants system in aqueous solution. J. Surfact. Deterg. 14, 545–554 (2011)CrossRefGoogle Scholar
  75. 75.
    J.H. Harwell, J.F. Scamehorn, in Adsorption from Mixed Surfactant Systems, ed. by K. Ogino, M. Abe (CRC Press, New York, 1992), pp. 263–280Google Scholar
  76. 76.
    K.S. Birdi, Surface and Colloid Chemistry: Principles and Applications (CRC Press, New York, 2009)CrossRefGoogle Scholar
  77. 77.
    J. Aubert, A. Kraynik, P. Rand, Aqueous foams. Sci. Am. 254(5), 74–82 (1986)CrossRefGoogle Scholar
  78. 78.
    M. Krzan, Rheology of the wet surfactant foams and biofoams-a review. Tech. Trans. Chem. 1-Ch, 9–27 (2013)Google Scholar
  79. 79.
    D. Hirt, R. Prudhomme, L. Rebenfeld, Characterization of foam cell size and foam quality using factorial design analyses. J. Dispers. Sci. Technol. 8(1), 55–73 (1987)CrossRefGoogle Scholar
  80. 80.
    S. Gido, D. Hirt, S. Montgomery, R. Prud’homme, L. Rebenfeld, Foam bubble size measured using image analysis before and after passage through a porous medium. J. Dispers. Sci. Technol. 10(6), 785–793 (1989)CrossRefGoogle Scholar
  81. 81.
    P. Walstra, in Principles of Foam Formation and Stability, Springer Series in Applied Biology, ed. by A.J. Wilson (Springer, Berlin, 1989), pp. 1–16Google Scholar
  82. 82.
    S. Magrabi, B. Dlugogorski, G. Jameson, Bubble size distribution and coarsening of aqueous foams. Chem. Eng. Sci. 54, 4007–4022 (1999)CrossRefGoogle Scholar
  83. 83.
    S. Hutzler, D. Weaire, A. Saugey, S. Cox, N. Peron, The physics of foam drainage, in Proceedings of the 52 SEPAWA Kongress on European Detergents Conference, Wurzburg (2005), pp. 191–206Google Scholar
  84. 84.
    V. Bergeron, P. Walstra, in Foams, ed. by J. Lyklema (Elsevier, Amsterdam, 2005), pp. 7.1–7.38Google Scholar
  85. 85.
    G.M. Kontogeorgis, S. Kiil, Introduction to Applied Colloid and Surface Chemistry (Wiley, United Kingdom, 2016)CrossRefGoogle Scholar
  86. 86.
    K. Bonsu, N. Shokri, P. Grassia, Fundamental investigation of foam flow in a liquid-filled Hele-Shaw cell. J. Colloid Interface Sci. 462, 288–296 (2016)CrossRefGoogle Scholar
  87. 87.
    K. Vijayaraghavan, A. Nikolov, D. Wasan, D. Henderson, Foamability of liquid particle suspensions: a modeling study. Ind. Eng. Chem. Res. 48(17), 8180–8185 (2009)CrossRefGoogle Scholar
  88. 88.
    S. Wei, C. Yiqiang, Z. Yunsheng, M. Jones, Characterization and simulation of microstructure and thermal properties of foamed concrete. Constr. Build. Mater. 47, 1278–1291 (2013)CrossRefGoogle Scholar
  89. 89.
    G. Miles, L. Shedlovsky, J. Ross, Foam drainage. J. Phys. Chem. 49, 93–107 (1945)CrossRefGoogle Scholar
  90. 90.
    S. Magrabi, B. Dlugogorski, G. Jameson, A comparative study of drainage characteristics in AFFF and FFFP compressed-air fire-fighting foams. J. Fire Saf. 37, 21–52 (2002)CrossRefGoogle Scholar
  91. 91.
    J.J. Sheng, in Foams and Their Applications Enhancing Oil Recovery, ed. by J.J. Sheng (Gulf Professional Publishing, Oxford, 2013), pp. 251–280Google Scholar
  92. 92.
    D. Sarma, K. Khilar, Effects of initial gas volume fraction on stability of aqueous air foams. Ind. Eng. Chem. Res. 27(5), 892–894 (1988)CrossRefGoogle Scholar
  93. 93.
    ASTM C 796, Standard Test Method for Foaming Agents for Use in Producing Cellular Concrete Using Preformed Foam (ASTM International, West Conshohocken, 1997)Google Scholar
  94. 94.
    A. Hamad, Materials, production, properties and application of aerated lightweight concrete: review. Int. J. Mater. Sci. Res. 2(2), 152–157 (2014)Google Scholar
  95. 95.
    A. Colak, Density and strength characteristics of foamed gypsum. Cem. Concr. Compos. 22, 193–200 (2000)CrossRefGoogle Scholar
  96. 96.
    A. Kroezen, J. Wassink, C. Schipper, The flow properties of foam. J. Soc. Dyers Colour. 104, 393–400 (1988)CrossRefGoogle Scholar
  97. 97.
    I. Callaghan, in Non-aqueous Foams: A Study of Crude Oil Foam Stability, Springer Series in Applied Biology, ed. by A.J. Wilson (Springer, Berlin, 1989), pp. 89–104Google Scholar
  98. 98.
    A. Brown, W. Thuman, J. McBain, Transfer of air through adsorbed surface films as a factor in foam stability. J. Colloid Sci. 8(5), 508–519 (1953)CrossRefGoogle Scholar
  99. 99.
    B. Murray, R. Ettelaie, Foam stability: proteins and nanoparticles. Curr. Opin. Colloid Interface Sci. 9, 314–320 (2004)CrossRefGoogle Scholar
  100. 100.
    P. Wilde, Foam measurement by the microconductivity technique: an assessment of its sensitivity to interfacial and environmental factors. J. Colloid Sci. 178(2), 733–739 (1996)CrossRefGoogle Scholar
  101. 101.
    S. Tan, D. Fornasiero, R. Sedev, J. Ralston, The role of surfactant structure on foam behaviour. Colloids Surf. A Physicochem. Eng. Asp. 263, 233–238 (2005)CrossRefGoogle Scholar
  102. 102.
    S. Magrabi, B. Dlugogorski, G. Jameson, Free drainage in aqueous foams: model and experimental study. AIChE J. 47(2), 314–327 (2001)CrossRefGoogle Scholar
  103. 103.
    S. Hutzler, S. Cox, G. Wang, Foam drainage in two dimensions. Colloids Surf. A Physicochem. Eng. Asp. 263, 178–183 (2005)CrossRefGoogle Scholar
  104. 104.
    J. Lee, A. Nikolov, D. Wasan, Surfactant micelles containing solubilized oil decrease foam film thickness stability. J. Colloid Interface Sci. 415, 18–25 (2014)CrossRefGoogle Scholar
  105. 105.
    L. Sanova, A. Lisitsyn, Simulation of foaming ability, multiplicity, and foam stability of shampoo. Russ. J. Appl. Chem. 85(6), 898–906 (2012)CrossRefGoogle Scholar
  106. 106.
    L. Shrestha, D. Acharya, S. Sharma, K. Aramaki, H. Asaoka, K. Ihara, T. Tsunehiro, H. Kunieda, Aqueous foam stabilized by dispersed surfactant solid and lamellar liquid crystalline phase. J. Colloid Interface Sci. 301, 274–281 (2006)CrossRefGoogle Scholar
  107. 107.
    P. Weschayanwiwat, J. Scamehorn, P. Reilly, Surfactant properties of low molecular weight phospholipids. J. Surfact. Deterg. 8(1), 65–72 (2005)CrossRefGoogle Scholar
  108. 108.
    ASTM C 869, Standard Specification for Foaming Agents Used in Making Preformed Foam for Cellular Concrete (ASTM International, West Conshohocken, 2011)Google Scholar
  109. 109.
    H. Awang, M. Mydin, A. Roslan, Effect of additives on mechanical and thermal properties of lightweight foamed concrete. Adv. Appl. Sci. Res. 3(5), 3326–3338 (2012)Google Scholar
  110. 110.
    E. Nambiar, K. Ramamurthy, Influence of filler type on the properties of foam concrete. Cem. Concr. Compos. 28, 475–480 (2006)CrossRefGoogle Scholar
  111. 111.
    E. Nambiar, K. Ramamurthy, Models for strength prediction of foam concrete. Mater. Struct. 41, 247–254 (2008)CrossRefGoogle Scholar
  112. 112.
    P. Vananuvat, J. Kinsella, Functional properties of protein isolates from yeast, Saccharomyces fragilis. J. Agric. Food Chem. 23(4), 613–616 (1975)CrossRefGoogle Scholar
  113. 113.
    D. Varade, D. Carriere, L. Arriaga, A. Fameau, E. Rio, D. Langevin, W. Drenckhan, On the origin of the stability of foams made from catanionic surfactant mixtures. Soft Matter 7, 6557–6570 (2011)CrossRefGoogle Scholar
  114. 114.
    J. Boos, W. Drenckhan, C. Stubenrauch, Protocol for studying aqueous foams stabilized by surfactant mixtures. J. Surfact. Deterg. 16, 1–12 (2013)CrossRefGoogle Scholar
  115. 115.
    K. Marinova, E. Basheva, B. Nenova, M. Temelska, A. Mirarefi, B. Campbell, I. Ivanov, Physico-chemical factors controlling the foamability and foam stability of milk proteins: sodium caseinate and whey protein concentrates. Food Hydrocoll. 23(7), 1864–1876 (2009)CrossRefGoogle Scholar
  116. 116.
    G.I.S. Ranjani, Investigations on behavior of preformed foam concrete using two synthetic surfactants. Ph.D. Thesis. Chennai IIT Madras, (2011)Google Scholar
  117. 117.
    A. Richard, M. Ramli, A qualitative study of green building indexes rating of lightweight foam concrete. J. Sustain. Dev. 4(5), 188–195 (2011)CrossRefGoogle Scholar
  118. 118.
    E. Kearsley, M. Visagie, Micro-properties of foamed concrete, in Proceedings of the International Conference on Specialist Techniques and Materials for Construction, University of Dundee, Dundee, (1999), pp. 173–184Google Scholar
  119. 119.
    S. Quebaud, M. Sibai, J. Henry, Use of chemical foam for improvements in drilling by earth-pressure balanced shields in granular soils. Tunn. Undergr. Sp. Technol. 13(2), 173–180 (1998)CrossRefGoogle Scholar
  120. 120.
    S. Karl, J.D. Worner, Special concretes-workability and mixing, in Proceedings of the International RILEM workshop on Workability of Special Concrete Mixes, University of Paisley, Paisley (1994), pp. 217–223Google Scholar
  121. 121.
    E. Nambiar, K. Ramamurthy, Fresh state characteristics of foam concrete. J. Mater. Civ. Eng. 20(2), 111–117 (2008)CrossRefGoogle Scholar
  122. 122.
    R.C. Valore, Foam and gas concretes, in Proceedings of the Conference presented as part of the 1960 fall Conferences of the Building Research Institute, Washington (1961), pp. 5–29Google Scholar
  123. 123.
    J. SathyaNarayanan, K. Ramamurthy, Development of solid, foam concrete interlocking blocks and studies on short masonry specimens. Mason. Int. 26(1), 7–16 (2013)Google Scholar
  124. 124.
    T.N.W. Akroyd, Concrete: Properties and Manufacture (Pergamon Press, New York, 1962)Google Scholar
  125. 125.
    The Aberdeen Group, Cellular Concrete. (Concrete Construction, 1963), http://www.concreteconstruction.net/how-to/materials/cellular-concrete. Accessed 20 April 2016
  126. 126.
    G.I.S. Ranjani, K. Ramamurthy, Behaviour of foam concrete under sulphate environments. Cem. Concr. Compos. 34(7), 825–834 (2012)CrossRefGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2018

Authors and Affiliations

  • Sritam Swapnadarshi Sahu
    • 1
  • Indu Siva Ranjani Gandhi
    • 1
  • Selija Khwairakpam
    • 1
  1. 1.Department of Civil EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations