Experimental and computational insights into the synthesis and characterization of a novel Schiff base ligand 2, 2′-[(1z, 14e)-2, 5, 8,11,14-pentaazapentadeca-1, 14-diene-diyl] diphenol


A novel Schiff base of N1,N5-Bis(salicylidene) tetraethylene pentamine (BSTEPA) was synthesized by using reflux method. The prepared molecule has been characterized using 1H NMR and IR spectral methods. The complete vibrational characterization of the molecule was performed using experimental (FTIR and FT-Raman) spectra and calculations at Density Functional Theory (DFT) level. In order to perform a detailed vibrational spectroscopic analysis of BSTEPA, Fourier Transform Infrared (FTIR) and Fourier Transform Raman (FT-Raman) spectra were recorded in condensed phase and used as such. Density Functional Theory calculations in the B3LYP/6-31G** level have been carried out on the title molecule in order to determine the optimized geometry and vibrational wavenumbers. The ultraviolet visible (UV–Vis) spectra of BSTEPA were recorded in the range of 300–500 nm for various solvents. The natural bond orbital and frontier molecular orbital analyses were also performed at same DFT level of calculations.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Code availability

The basic computational files for the title compound were available and can be shared upon the interest of the editor/reviewer.


  1. 1.

    Schiff H (1864) Mittheilungen aus dem Universitäts laboratorium in Pisa: Eine neue Reihe organischer Basen. Justus Liebigs Annalen der Chemie 131:118–119. https://doi.org/10.1002/jlac.18641310113

    Article  Google Scholar 

  2. 2.

    Dhar DN, Taploo CL (1982) Schiff bases and their applications. J Sci Ind Res 41(8):501–506

    Google Scholar 

  3. 3.

    Przybylski P (2009) Biological properties of Schiff bases and azo derivatives of phenols. Curr Org Chem 13(2):124–148. https://doi.org/10.2174/138527209787193774

    Article  Google Scholar 

  4. 4.

    Yıldız M et al (2015) Synthesis, biological activity, DNA binding and anion sensors, molecular structure and quantum chemical studies of a novel bidentate Schiff base derived from 3,5-bis(triflouromethyl)aniline and salicylaldehyde. J Mol Struct 1094:148–160. https://doi.org/10.1016/j.molstruc.2015.03.047

    Article  Google Scholar 

  5. 5.

    Guha A, Adhikary J, Mondal TK, Das D (2011) Zinc and cadmium complexes of a Schiff base ligand derived from diaminomaleonitrile and salicylaldehyde: synthesis, characterization, photoluminescence properties and DFT study. Indian J Chem 50A:1463–1468

    Google Scholar 

  6. 6.

    Papanikolaou PA, Christidis PC, Chaviara AT, Bolos CA, Tsipis AC (2006) An experimental and density functional study of the interaction of CuII complexes of diethylenetriamine (dien) with pyridine, nicotinic acid, and nicotinamide: the crystal structure of [Cu(dien)(nicotinamide)(NO3)2]. Ber Dtsch Chem Ges 10:2083–2096. https://doi.org/10.1002/ejic.200500894

    Article  Google Scholar 

  7. 7.

    Dos Santo HF, Paschoa D, Burda JV (2012) Exploring the potential energy surface for interaction of a trichloro (diethylenetriamine) gold (III) complex with strong nucleophiles. Chem Phys Lett 548:64–70. https://doi.org/10.1016/j.cplett.2012.07.080

    Article  Google Scholar 

  8. 8.

    Salva A, Donoso J, Frau J, Munoz F (2003) DFT studies on Schiff base formation of vitamin B6 analogues. J Phys Chem 107(44):9409–9414. https://doi.org/10.1021/jp909156m

    Article  Google Scholar 

  9. 9.

    Eshtiagh-Hosseini H, Housaindokht MR, Ali Beyramabadi S, Hamid Mir Tabatabaei S, Esmaeili AA, Khoshkholgh MJ (2011) Synthesis, experimental and theoretical characterization of N,N-dipyridoxyl (1,4-butanediamine) Schiff-base ligand and its Cu(II) complex. Spectrochim Acta A 78:1046–1050. https://doi.org/10.1016/j.saa.2010.12.045

    Article  Google Scholar 

  10. 10.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2010) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  11. 11.

    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Phys Chem A 98:5648. https://doi.org/10.1063/1.464913

    Article  Google Scholar 

  12. 12.

    Lee C, Yang W, Parr PG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phy Rev B 37:785. https://doi.org/10.1103/PhysRevB.37.785

    Article  Google Scholar 

  13. 13.

    Christoph S, Krause S, Kuhn S (2003) NMRShiftDB constructing a free chemical information system with open-source components. J Chem Inf Model 43(6):1733–1739. https://doi.org/10.1021/ci0341363

    Article  Google Scholar 

  14. 14.

    Banfi D, Patiny L (2008) Resurrecting and processing NMR spectra on-line. Chimia 62(4):280–281

    Article  Google Scholar 

  15. 15.

    Binev Y, Marques Maria M B, Aires-de-Sousa J (2007) Prediction of 1H NMR coupling constants with associative neural networks trained for chemical shifts. J Chem Inf Model 47:2089–2097. https://doi.org/10.1021/ci700172n

    Article  Google Scholar 

  16. 16.

    Castillo AM, Patiny L, Wist J (2011) Fast and accurate algorithm for the simulation of NMR spectra of large spin systems. J Mag Res 209:123–130. https://doi.org/10.1016/j.jmr.2010.12.008

    Article  Google Scholar 

  17. 17.

    Aires-de-Sousa J, Hemmer M, Gasteiger J (2002) Prediction of 1H NMR chemical shifts using neural networks. Anal Chem 74(1):80–90. https://doi.org/10.1021/ac010737m

    Article  Google Scholar 

  18. 18.

    Binev Y, Aires-de-Sousa J (2004) Structure-based predictions of 1H NMR chemical shifts using feed-forward neural networks. J Chem Inf Comput Sci 44(3):940–945. https://doi.org/10.1021/ci034228s

    Article  Google Scholar 

  19. 19.

    Irikura KK, Johnson RD, Kacker RN (2005) Uncertainties in scaling factors for ab initio vibrational frequencies. J Phys Chem 109(37):8430–8437. https://doi.org/10.1021/jp0519464

    Article  Google Scholar 

  20. 20.

    Galabov B, Yamaguchi Y, Remington RB, Schaefer HF (2002) High level ab initio quantum mechanical predictions of infrared intensities. J Phys Chem A 106(5):819–832. https://doi.org/10.1021/jp013297b

    Article  Google Scholar 

  21. 21.

    Head-Gordon M, Byrd EFC, Sherrill CD (2001) The theoretical prediction of molecular radical species: a systematic study of equilibrium geometries and harmonic vibrational frequencies. J Phys Chem A 105(42):9736–9747. https://doi.org/10.1021/jp011132x

    Article  Google Scholar 

  22. 22.

    Jamroz MH (2004) Vibrational energy distribution analysis VEDA 4 program. Drug Institute, Warsaw

    Google Scholar 

  23. 23.

    Weinhold F (2001) Chemistry: a new twist on molecular shape. Nature 411:539–541. https://doi.org/10.1038/35079036

    Article  Google Scholar 

  24. 24.

    Li XH, Zhang RZ, Zhang XZ (2009) Natural bond orbital analysis of some para-substituted N-nitrosoacetanilide biological molecules. Struct Chem 2:1049–1054. https://doi.org/10.1007/s11224-009-9508-y

    Article  Google Scholar 

  25. 25.

    Reed AE, Curtis LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926. https://doi.org/10.1021/acs.chemrev.7b00449

    Article  Google Scholar 

  26. 26.

    Socrates G (2001) Infrared and Raman characteristic group frequencies tables and charts. Wiley, Chichester

    Google Scholar 

  27. 27.

    Lin-vien D, Colthup NB, Fateley WG, Grasselli JG (1990) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic Press, New York

    Google Scholar 

  28. 28.

    Bellamy LJ (1976) The infrared spectra of complex molecules. Wiley, New York

    Google Scholar 

  29. 29.

    Muthunatesan S, Ragavendran V (2015) A study of vibrational spectra and investigations of charge transfer and chemical bonding features of 2-chloro benzimidazole based on DFT computations. Spectrochim Acta Part A Mol Biol Spectrosc 134:148–154. https://doi.org/10.1016/j.saa.2014.06.029

    Article  Google Scholar 

  30. 30.

    George WO, McIntyre PS, Mowthorpe DJ (1987) Infrared spectroscopy. Wiley, Chichester. https://doi.org/10.1016/0039-9140(90)80083-R

    Book  Google Scholar 

  31. 31.

    Ragavendran V, Muthunatesan S (2017) New insights into the vibrational spectroscopic investigation on S-cis & S-trans forms of 2-Methoxy benzoyl chloride. Vib Spectrosc 92:35–45. https://doi.org/10.1016/j.vibspec.2017.04.006

    Article  Google Scholar 

  32. 32.

    Pavia DL, Lampman GM, Kriz GS (2001) Introduction to spectroscopy. In: Vondeling J, Kiselica S (eds) Inf Spect. Harcourt College Publisher, Orlando

  33. 33.

    Pecsok RL, Shields LD (1976) Modern methods of chemical analysis. Wiley, New York

    Google Scholar 

  34. 34.

    Ragavendran V, Muthunatesan S, Santhanam V, Arsic B (2019) Synthesis and characterization of cinnamylidene acetone: a study on tuning of band gap by vibrational spectroscopic tools. J Mol Struct 1184:593–603. https://doi.org/10.1016/j.molstruc.2019.02.057

    Article  Google Scholar 

  35. 35.

    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  Google Scholar 

  36. 36.

    Mulliken RS (1934) A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys 2:782–795. https://doi.org/10.1063/1.1749394

    Article  Google Scholar 

  37. 37.

    Mulliken RS (1935) Electronic structures of molecules XI. Electroaffinity, molecular orbitals and dipole moments. J Chem Phys 3(9):573–585. https://doi.org/10.1063/1.1749731

    Article  Google Scholar 

  38. 38.

    Glenening ED, Reed AE, Carpenter JE, Weinhold F, Bohmann JA, Morales CM (2001) NBO version 5.0, theoretical chemistry. Institute University of Wisconsin, Madison

    Google Scholar 

  39. 39.

    Li X, Zhang R, Zhang X (2009) Natural bond orbital analysis of some para-substituted N-nitrosoacetanilide biological molecules. Struct Chem 20:1049. https://doi.org/10.1007/s11224-009-9508-y

    Article  Google Scholar 

  40. 40.

    Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. Chem Phys 83:735. https://doi.org/10.1063/1.449486

    Article  Google Scholar 

  41. 41.

    Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree–Fock water dimer. J Chem Phys 78:4066. https://doi.org/10.1063/1.445134

    Article  Google Scholar 

  42. 42.

    Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102(24):7211–7218. https://doi.org/10.1021/ja00544a007

    Article  Google Scholar 

  43. 43.

    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926. https://doi.org/10.1021/cr00088a005

    Article  Google Scholar 

  44. 44.

    Erbudak M, Gubanov VA, Kurmaev EZ (1978) The electronic structure of NBO: theory and experiment. Solid State Commun 27:iii

    Article  Google Scholar 

  45. 45.

    Dolbier WR, Burkholder CR (1980) Diels-Alder reactions of fluoroallene. An affirmation of homo-lumo control. Tetra Lett 21(9):785–786. https://doi.org/10.1016/S0040-4039(00)71504-8

    Article  Google Scholar 

  46. 46.

    Wolfe S, Livneh M, Cohen D, Hoz S (1989) The ambident nucleophilic center. Stereochemical consequences of HOMO–LUMO and HOMO–HOMO dominant processes. Isr J Chem 29:221–227. https://doi.org/10.1002/ijch.198900030

    Article  Google Scholar 

  47. 47.

    Scrocco E, Tomsi J (1978) Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials. Adv Quant Chem 11:115. https://doi.org/10.1016/S0065-3276(08)60236-1

    Article  Google Scholar 

  48. 48.

    Jun-na L, Zhi-rang C, Shen-fang Y, Zhejiang (2005) Study on the prediction of visible absorption maxima of azobenzene compounds. J Zhejiang Univ Sci 6B:584. https://doi.org/10.1631/jzus.2005.B0584

    Article  Google Scholar 

Download references


The authors are thankful to Sophisticated Analytical Instrumentation Facility (SAIF), IIT Madras and Department of Optoelectronics, University of Kerala for providing spectral measurements.


There are no funding details to declare.

Author information




Dr. VR: has made contributions to the conceptualization, data curation, formal analysis, methodology, project administration, supervision, validation, visualization, original draft, review and editing of data for the work. Mrs. VN: has made contributions to the investigation, methodology and original draft of data for the work. Mr. VS: has made contributions to the conceptualization, project administration and resources of data for the work. Mr. BL: has made substantial contribution to the software of data for the work. Mr. SK: has made substantial contribution to the software of data for the work.

Corresponding author

Correspondence to V. Ragavendran.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Availability of data and material

The basic computational data/files for the title compound was available and can be shared upon the interest of the editor/reviewer.

Electronic supplementary material

Below is the link to the electronic supplementary material.


Supplementary material 1 (DOCX 100 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nivetha, V., Ragavendran, V., Santhanam, V. et al. Experimental and computational insights into the synthesis and characterization of a novel Schiff base ligand 2, 2′-[(1z, 14e)-2, 5, 8,11,14-pentaazapentadeca-1, 14-diene-diyl] diphenol. CSIT 9, 71–81 (2021). https://doi.org/10.1007/s40012-020-00322-3

Download citation


  • Synthesis
  • Schiff base
  • FTIR & FT-Raman
  • DFT
  • UV–Visible