CSI Transactions on ICT

, Volume 6, Issue 1, pp 83–96 | Cite as

InGaN-based solar cells: a wide solar spectrum harvesting technology for twenty-first century

  • S. R. Routray
  • T. R. Lenka
S.I. : Visvesvaraya


Now a days solar photovoltaic (PV) is the promising technology to address global issues such as carbon-free electricity, shortage of fossil-fuel, global warming and low cost electricity. This would be successful while the conversion efficiency is improved and new technology is developed. One such technology to achieve over 40% efficiency is to stack III–V compound semiconductors to form multi-junctions. Indium Gallium Nitride (InxGa1−xN) is a highly emerging material with band gap ranging from 0.64 to 3.4 eV which has the ability to absorb nearly whole solar spectrum to increase the conversion efficiency copiously. Since past few years, In x Ga1−x N material has been showing its potential for different optoelectronic and power electronic applications. This motivation is driving immense scientific interest to develop high-performance solar cells using In x Ga1−x N material. This paper highlights the basic advantageous properties of In x Ga1−x N materials, its growth technology and state-of-the-art application towards PV devices. The most important challenges that remain in realizing a high-efficiency In x Ga1−x N PV device are also discussed here. Finally, conclusions are drawn about the potential and future aspects of In x Ga1−x N material system towards terrestrial as well as space photovoltaic applications.


InGaN Low cost Solar cell High efficiency 



The authors gratefully acknowledge Ministry of Electronics and Information Technology (MeitY), Govt. of India for the research fellowship under Visvesvaraya Ph.D. scheme.


  1. 1.
    Stocker TF (2013) IPCC, 2013: summary for policymakers. In: Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Waldau AJ (2016) PV Status Report 2016, European Commission, Joint Research Centre, Directorate C, Energy Efficiency and Renewables Unit, Ispra, VA, ItalyGoogle Scholar
  3. 3.
    Green MA (2003) Third generation photovoltaics: advanced solar energy conversion, 1st edn. Springer, BerlinGoogle Scholar
  4. 4.
    Green MA (2005) Third generation photovoltaics: advanced solar energy conversion, 2nd edn. Springer, Berlin, pp 59–69Google Scholar
  5. 5.
    Ulanoff L, Musk ER, Solar City Unveil (2015) World’s most efficient solar panel. Mashable. Accessed 15 Mar 2017
  6. 6.
    Hamakawa Y (2004) Thin-film solar cells: next generation photovoltaics and its applications. Spinger, New YorkCrossRefGoogle Scholar
  7. 7.
    Kibria MT, Ahammed A, Sony SM, Hossain F, Islam SU (2015) A review: comparative studies on different generation solar cells technology. In: Proceedings of 5th International Conference on Environmental Aspects of Bangladesh. 11–12 Sept 2015Google Scholar
  8. 8.
    Green MA et al (2017) Solar cell efficiency tables (version 49). Prog Photovolt Res Appl 25:3–13CrossRefGoogle Scholar
  9. 9.
    Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys 32:510–519CrossRefGoogle Scholar
  10. 10.
    Henry CH (1980) Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J Appl Phys 51:4494–4500CrossRefGoogle Scholar
  11. 11.
    Devos A (1992) Endo-reversible thermodynamics of solar energy conversion. Oxford University Press, OxfordGoogle Scholar
  12. 12.
    Jani O (2008) Development of wide-band gap InGaN solar cells for high efficiency photovoltaics. Ph.D. dissertation, School of Electrical and Computer Engineering at the Georgia Institute of Technology, Attanta, GAGoogle Scholar
  13. 13.
    King RR, Law DC, Edmondson KM, Fetzer CM, Kinsey GS, Yoon H, Sherif RA, Karam NH (2007) 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl Phys Lett 90:183516–183519CrossRefGoogle Scholar
  14. 14.
    Davydov VY et al (2002) Absorption and emission of hexagonal InN. Evidence of narrow fundamental bandgap. Phys Status Solidi B 229:R1–R3CrossRefGoogle Scholar
  15. 15.
    Wu J et al (2002) Unusual properties of the fundamental band gap of InN. Appl Phys Lett 80:4741–4743CrossRefGoogle Scholar
  16. 16.
    Matsuoka T, Okamoto H, Nakao M, Harima H, Kurimoto E (2002) Optical bandgap of wurtzite InN. Appl Phys Lett 81:1246–1248CrossRefGoogle Scholar
  17. 17.
    Vurgaftman I, Meyer JR (2003) Band parameters for nitrogen-containing semiconductor. J Appl Phys 94:3675–3696CrossRefGoogle Scholar
  18. 18.
    Wu W, Walukiewicz W (2003) Band gaps of InN and group III nitride alloys. Superlattices Microstruct 34:63–75CrossRefGoogle Scholar
  19. 19.
    Walukiewicz W, Ager JW, Yu KM, Weber ZL, Wu J, Li SX, Jones RE, Denlinger JD (2006) Structure and electronic properties of InN and in- rich group III-nitride alloys. J Phys D Appl Phys 39:R83CrossRefGoogle Scholar
  20. 20.
    Mei L, Yixu X, Jianhua Z, Shunqing W, Zizhong Z (2016) Hybrid functional calculations on the band gap bowing parameters of InxGa1−xN. J Semicond 37:42001-1Google Scholar
  21. 21.
    Bhuiyan AG, Sugita K, Hashimoto A, Yamamoto A (2012) InGaN solar cells: present state of the art and important challenges. IEEE J Photovolt 2:276–293CrossRefGoogle Scholar
  22. 22.
    Nanishi Y, Saito Y, Yamaguchi T (2003) RF-molecular beam epitaxy growth and properties of InN and related alloys. Jpn J Appl Phys 42:2549–2559CrossRefGoogle Scholar
  23. 23.
    Jani O, Ferguson I, Honsberg C, Kurtz S (2007) Design and characterization of GaN/InGaN solar cells. Appl Phys Lett 91:132117-1–132117-3CrossRefGoogle Scholar
  24. 24.
    Mclaughlin DVP, Pearce JM (2013) Progress in indium gallium nitride materials for solar photovoltaic energy conversion. Metall Mater Trans A 44:1947–1954CrossRefGoogle Scholar
  25. 25.
    Kobayashi A, Kawaguchi Y, Ohta J, Fujiwara HF, Ishii A, Kobayashi A, Kawaguchi Y, Ohta J, Fujioka H (2006) Polarity control of GaN grown on ZnO surfaces (000-1) surfaces. Appl Phys Lett 88:181907CrossRefGoogle Scholar
  26. 26.
    Tsai CL, Liu GS, Fan GC, Lee YS (2010) Substrate-free large gap InGaN solar cells with bottom reflector. Solid State Electron 54:541–544CrossRefGoogle Scholar
  27. 27.
    Guo W, Zhang M, Banerjee A, Bhattacharya P (2010) Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. Nano Lett 10:3356–3359Google Scholar
  28. 28.
    Chung K, Lee CH, Yi GC (2010) Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science 300:655–657CrossRefGoogle Scholar
  29. 29.
    Liou BW (2011) Design and fabrication of InxGa1 −xN/GaN solar cells with a multiple-quantum-well structure on SiCN/Si (111) substrates. Thin Solid Films 520:1–7CrossRefGoogle Scholar
  30. 30.
    Wang HW, Chen HC, Chang YA, Lin CC, Han HW, Tsai MA, Kuo HC, Yu P, Lin SH (2011) Conversion efficiency enhancement of GaN/In0.11Ga0.89N solar cells with nano patterned sapphire and biomimetic surface antireflection process. IEEE Photonics Technol Lett 23:1304–1306CrossRefGoogle Scholar
  31. 31.
    Cardin V, Dion-Bertrand LI, Gregoire P, Nguyen HPT, Sakowicz M, Mi Z, Silva C, Leonelli R (2013) Recombination dynamics in InGaN/GaN nanowire heterostructures on Si (111). Nanotechnology 24:45702CrossRefGoogle Scholar
  32. 32.
    Young NG, Farrell RM, Hu YL, Terao Y, Iza M, Keller S, Denbaars SP, Nakamura S, Speck JS (2013) High performance thin quantum barrier InGaN/GaN solar cells on sapphire and bulk (0001) GaN substrates. Appl Phys Lett 103:173903-1-5Google Scholar
  33. 33.
    Tessarek C, Figge S, Gust A, Heilmann M, Dieker C, Spiecker E, Christiansen S (2014) Optical properties of vertical, tilted and in-plane GaN nanowires on different crystallographic orientations of sapphire. J Phys D Appl Phys 47:394008CrossRefGoogle Scholar
  34. 34.
    Huang H, Chu J, Nakamura S, Mukai T, Senoh M, Nakamura S, Mukai T (2016) InGaN thin film deposition on Si (100) and glass substrates by termionic vacuum arc. In: International Physics Conference at the Anatolian Peak (IPCAP2016), vol 707, p 012019Google Scholar
  35. 35.
    Jani O, Jampana B, Mehta M, Yu H, Ferguson I, Opila R, Honsberg C (2008) Optimization of GaN window layer for InGaN solar cells using polarization effect. In: Conference Record of the 33rd IEEE Photovoltaic Specialists Conference, San Diego, USA, pp 7–10Google Scholar
  36. 36.
    Chen X, Matthews KD, Hao D, Schaff WJ, Eastman LF (2008) Growth, fabrication, and characterization of InGaN solar cells. Phys Status Solidi Appl Mater Sci 205:1103–1105CrossRefGoogle Scholar
  37. 37.
    Hsu L, Walukiewicz L (2008) Modeling of InGaN/Si tandem solar cells. J Appl Phys 104:1–7CrossRefGoogle Scholar
  38. 38.
    Routray SR, Lenka TR (2016) Numerical study of the influence of polarization on the performance of GaN/InxGa1−xN nanowire solar cells. In: 2nd International Conference on Solar Energy Photovoltaic (ICSEP-16), Bhubaneswar, IndiaGoogle Scholar
  39. 39.
    Ambacher O, Majewski J (2002) Pyroelectric properties of Al (In) GaN/GaN hetero-and quantum well structures. J Phys Condens Matter 14:3399–3434CrossRefGoogle Scholar
  40. 40.
    Kuo Y, Lin H, Chang JY, Chen Y, Chang Y (2012) Polarization effect on the photovoltaic characteristics of polarization effect on the photovoltaic characteristics of Al0.14Ga0.86N/In0.21Ga0.79N superlattice solar cells. IEEE Electron Device Lett 33:1159–1161CrossRefGoogle Scholar
  41. 41.
    Nam SY, Choi YS, Song YH, Jung MH, Kang CM, Kong DJ, Park SJ, Lee JY, Namkoong G, Lee DS (2013) N-ZnO/i-InGaN/p-GaN heterostructure for solar cell application. Phys Status Solidi Appl Mater Sci 210:2214–2218CrossRefGoogle Scholar
  42. 42.
    Lin S, Zhang BP, Zeng SW, Cai XM, Zhang JY, Wu XS, Ling AK, Weng GE (2011) Preparation and properties of Ni/InGaN/GaN Schottky barrier photovoltaic cells. Solid State Electron 63:105–109CrossRefGoogle Scholar
  43. 43.
    Wang H, Yu P, Wu Y, Kuo H, Chang EY, Lin S (2013) Projected efficiency of polarization-matched p-InxGa1−xN/i-InyGa1−yN/n-GaN double heterojunction solar cells. IEEE J Photovolt 3:985–990CrossRefGoogle Scholar
  44. 44.
    Dong J, Tian BZ, Kempa TJ, Lieber CM (2009) Coaxial group III—nitride nanowire photovoltaics. Nano Lett 9:2183–2187CrossRefGoogle Scholar
  45. 45.
    Messanvi A, Zhang H, Neplokh V, Julien FH, Bayle F, Foldyna M, Bougerol C, Gautier E, Babichev A, Durand C, Eymery J, Tchernycheva M (2015) Investigation of photovoltaic properties of single core–shell GaN/InGaN wires. ACS Appl Mater Interfaces 7:21898–21906CrossRefGoogle Scholar
  46. 46.
    Ren CX (2015) Polarisation fields in III-nitrides: effects and control. Mater Sci Technol 32:418–433Google Scholar
  47. 47.
    Lahnemann J, Brandt O, Jahn U, Pfuller C, Roder C, Dogan P, Grosse F, Belabbes A, Bechstedt F, Trampert A, Geelhaar L (2012) Direct experimental determination of the spontaneous polarization of GaN. Phys Rev B 86:1–5CrossRefGoogle Scholar
  48. 48.
    Yu ET, Dang XZ, Asbeck PM, Lau SS, Sullivan GJ (1999) Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures. J Vac Sci Technol, B 17B:1742CrossRefGoogle Scholar
  49. 49.
    Wood C, Jena D (2007) Polarization effects in semiconductors: from ab initio theory to device applications. Springer, New YorkGoogle Scholar
  50. 50.
    Waltereit P, Brandt O, Trampert A, Grahn H, Menniger J, Ramsteiner M, Reiche M, Ploog K (2000) Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406:865–868CrossRefGoogle Scholar
  51. 51.
    Chang J, Yen S, Chang Y, Kuo Y (2013) Simulation of high-efficiency GaN/InGaN p–i–n solar cell with suppressed polarization and barrier effects. IEEE J Quantum Electron 49:17–23CrossRefGoogle Scholar
  52. 52.
    Fiorentini V, Bernardini F, Ambacher O (2002) Evidence for nonlinear macroscopic polarization in III–V nitride alloy hetero structures. Appl Phys Lett 80:1204–1206CrossRefGoogle Scholar
  53. 53.
    Neufeld CJ, Cruz SC, Farrell RM, Iza M, Lang JR, Keller S, Nakamura S, Denbaars SP, Speck SP, Mishra UK (2011) Effect of doping and polarization on carrier collection in InGaN quantum well solar cells. Appl Phys Lett 98:22–25CrossRefGoogle Scholar
  54. 54.
    Namkoong G, Boland P, Bae SY, Shim JP, Lee DS, Jeon SR, Foe K, Latimer K, Doolittle WA (2011) Effect of III-nitride polarization on VOC in p–i–n and MQW solar cells. Phys Status Solidi Rapid Res Lett 5:86–88CrossRefGoogle Scholar
  55. 55.
    Chang JY, Kuo YK (2012) Simulation of N-face InGaN-based p–i–n solar cells. J Appl Phys 112:33109-1-5Google Scholar
  56. 56.
    Feneberg M, Thonke K (2007) Polarization fields of III-nitrides grown in different crystal orientations. J Phys Condens Matter 19:403201-1-26CrossRefGoogle Scholar
  57. 57.
    Romanov AE, Baker TJ, Nakamura S, Speck JS (2006) Strain-induced polarization in wurtzite III-nitride semipolar layers. J Appl Phys 100:23522-1-10CrossRefGoogle Scholar
  58. 58.
    Resta R, Vanderbilt D (2007) Theory of polarization: a modern approach. Top Appl Phys 105:31–68CrossRefGoogle Scholar
  59. 59.
    Fraas L, Partain L (2010) Solar cells and their applications, 2nd edn. Wiley, Hoboken, NJCrossRefGoogle Scholar
  60. 60.
    Fan JCC (1986) Theoretical temperature dependence of solar cell parameters. Sol Cells 17:309–315CrossRefGoogle Scholar
  61. 61.
    Butay DF, Miller MT (2008) Maximum peak power tracker: a solar application. Worcester Polytechnic Institute (WPI), Degree of Bachelor of Science, USAGoogle Scholar
  62. 62.
    Yamaguchi M, Okuda T, Taylor SJ, Takamoto T, Ikeda E, Kurita H (1997) Superior radiation resistance properties of InGaP/GaAs tandem solar cells. Appl Phys Lett 70:1566–1568CrossRefGoogle Scholar
  63. 63.
    Kurtz SR et al (1994) Recent advantages in high Efficiency GaInP/GaAs tandem solar cell. In: Proceedings of the 1st World Conference on Photovoltaic Energy Conversion, Hawaii, New YorkGoogle Scholar
  64. 64.
    Wu J, Walukiewicz W, Yu KM, Shan W, Ager JW, Haller EE, Lu H, Schaff WJ, Metzger WK, Kurtz S (2003) Superior radiation resistance of In1−xGaxN alloys: full-solar-spectrum photovoltaic material system. J Appl Phys 94:6477–6482CrossRefGoogle Scholar
  65. 65.
    Lien DH, Hsiao YH, Yang SG, Tsai ML, Wei TC, Lee SC, He JH (2015) Harsh photovoltaics using InGaN/GaN multiple quantum well schemes. Nano Energy 11:104–109CrossRefGoogle Scholar
  66. 66.
    Landis GA et al (2008) Solar power system design for the solar probe+ mission. In: Proceeding of 6th International Energy Conversion Engineering Conference (IECEC), Cleveland, OhioGoogle Scholar
  67. 67.
    Tsai DS, Lien WC, Lien DH, Chen KM, Tsai ML, Senesky DG, Yu YC, Pisano AP, He JH (2013) Solar-blind photodetectors for harsh electronics. Sci Rep 4:2628CrossRefGoogle Scholar
  68. 68.
    Schleife A, Fuchs F, Rodl C, Furthmuller J, Bechstedt F (2009) Branch-point energies and band discontinuities of III-nitrides and III-/II-oxides from quasi particle band-structure calculations. Appl Phys Lett 94:012104CrossRefGoogle Scholar
  69. 69.
    Kvietkova J, Siozade L, Disseix P, Vasson A, Leymarie J (2002) Optical investigations and absorption coefficient determination of InGaN/GaN quantum wells. Phys Status Solidi (a) Appl Mater Sci 140:135–140CrossRefGoogle Scholar
  70. 70.
    Brandt O, Wünsche HJ, Yang H, Klann R, Müllhäuser JR, Ploog KH (1998) Recombination dynamics in GaN. J Cryst Growth 189/190:790–793CrossRefGoogle Scholar
  71. 71.
    David A, Grundmann MJ (2010) Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes. Appl Phys Lett 97:1–4Google Scholar
  72. 72.
    Kumakura K, Makimoto T, Kobayashi N, Hashizume T, Fukui T, Hasegawa H (2007) Minority carrier diffusion lengths in MOVPE-grown n- and p-InGaN and performance of AlGaN/InGaN/GaN double heterojunction bipolar transistors. J Cryst Growth 298:787–790CrossRefGoogle Scholar
  73. 73.
    Hafiz S, Zhang F, Monavarian M, Avrutin V, Morkoc H, Ozgurr U, Metzner S, Bertram F, Christen J, Gil B (2015) Determination of carrier diffusion length in GaN. J Appl Phys 117:131061-4Google Scholar
  74. 74.
    Matoussi A et al (2003) Minority carrier diffusion lengths and optical self-absorption coefficient in undoped GaN. Phys Status Solidi (b) 240:160–168CrossRefGoogle Scholar
  75. 75.
    Hamzaoui H, Bouazzi AS, Rezig B (2005) Theoretical possibilities of InxGa1−xN tandem PV structures. Sol Energy Mater Sol Cells 87:595–603CrossRefGoogle Scholar
  76. 76.
    Chang JY, Yen SH, Chang YA, Liou BT, Kuo YK (2013) Numerical investigation of high-efficiency InGaN-based multijunction solar cell. IEEE Trans Electron Devices 60:4140–4145CrossRefGoogle Scholar
  77. 77.
    Jani O, Yu H, Trybus E, Jampana B, Ferguson I, Doolittle A, Honsberg C (2007) Effect of phase separation on performance of III–V nitride solar cells. In: 22nd European Photovoltaic Solar Energy Conference, Milan, ItalyGoogle Scholar
  78. 78.
    Cai XM, Zeng SW, Zhang BP (2009) Fabrication and characterization of InGaN p–i–n homojunction solar cell. Appl Phys Lett 95:173504-1–173504-3Google Scholar
  79. 79.
    Jampana BR, Melton AG, Jamil M, Faleev NN, Opila RL, Ferguson IT, Honsberg CB (2010) Design and realization of wideband-gap (~ 2.67 eV) InGaN p–n junction solar cell. IEEE Electron Device Lett 31:32–34CrossRefGoogle Scholar
  80. 80.
    Boney C, Hernandez I, Pillai R, Starikov D, Bensaoula A, Henini M, Syperek M, Misiewicz J, Kudrawiec M (2011) Growth and characterization of InGaN for photovoltaic devices. Phys Status Solidi (c) 8:2466–2668CrossRefGoogle Scholar
  81. 81.
    Nagatomo T, Kuboyama T, Minamino H, Omoto O (1989) Properties of Ga1−xInxN films prepared by MOVPE. J Appl Phys 28:L1334–L1336CrossRefGoogle Scholar
  82. 82.
    Pearton SJ (2000) GaN and related materials II. Amsterdam, The Netherlands, p 93Google Scholar
  83. 83.
    Ho I, Stringfellow GB (1996) Solid phase immiscibility in GaInN. Appl Phys Lett 69:2701–2703CrossRefGoogle Scholar
  84. 84.
    Yoshimoto N, Matsuoka T, Sasaki T, Katsu A (1991) Photoluminescence of InGaN films grown at high temperature by metal organic vapor phase epitaxy. Appl Phys Lett 59:2251–2253CrossRefGoogle Scholar
  85. 85.
    Yam FK, Hassan Z (2008) InGaN: An overview of the growth kinetics, physical properties and emission mechanisms. Superlattices Microstruct 43:1–23CrossRefGoogle Scholar
  86. 86.
    Fabien CAM, Moseley M, Gunning B, Doolittle WA, Fischer AM, Wei YO, Ponce FA (2014) Simulations, practical limitations, and novel growth technology for InGaN-based solar cells. IEEE J Photovolt 4:601–606CrossRefGoogle Scholar
  87. 87.
    Jani O, Honsberg C, Huang Y, Song J, Ferguson I, Namkoong G, Trybus E, Doolittle A, Kurtz S (2006) Design, growth, fabrication and characterization of high-band gap InGaN/GaN solar cells. In: IEEE 4th World Conference on Photovoltaic Energy Conversion, USA, pp 20–25Google Scholar
  88. 88.
    Sasamoto K, Hotta T, Sugita K, Bhuiyan AG, Hashimoto A, Yamamoto A, Kinoshita K, Kohji Y (2011) MOVPE growth of high quality p-type InGaN with an intermediate In composition range. J Cryst Growth 318:492–495CrossRefGoogle Scholar
  89. 89.
    Zhao S, Nguyen HPT, Kibria MJ, Mi Z (2015) III-Nitride nanowire optoelectronics. Prog Quantum Electron 44:14–68CrossRefGoogle Scholar
  90. 90.
    Farrell RM, Neufeld CJ, Cruz SC, Lang JR, Iza M, Keller S, Nakamura S, Denbaars SP, Mishra UK, Speck JS (2011) High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm. Appl Phys Lett 98:2009–2012CrossRefGoogle Scholar
  91. 91.
    Kuykendall T, Ulrich P, Aloni S, Yang P (2007) Complete composition tunability of InGaN nanowires using combinational approach. Nat Mater 6:951–956CrossRefGoogle Scholar
  92. 92.
    Cai XM, Leung YH, Cheung KY, Tam KH, Djurišić B, Xie MH, Chen HY, Gwo S (2006) Straight and helical InGaN core–shell nanowires with a high In core content. Nanotechnology 17:2330–2333CrossRefGoogle Scholar
  93. 93.
    Iliopoulos E, Georgakilas A, Dimakis E, Adikimenakis A, Tsagaraki K, Androulidaki M, Pelekanos NT (2006) InGaN (0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy. Phys Status Solidi (a) 203:102–105CrossRefGoogle Scholar
  94. 94.
    Zhang Y, Kappers MJ, Zhu D, Oehler F, Gao F, Humphreys CJ (2013) The effect of dislocations on the efficiency of InGaN/GaN solar cells. Sol Energy Mater Sol Cells 117:279–284CrossRefGoogle Scholar
  95. 95.
    Costa P, Datta R, Kappers MJ, Vickers ME, Humphreys CJ, Graham DM, Dawson P, Godfrey MJ, Thrush EJ, Mullins JT (2006) Misfit dislocations in In-rich InGaN/GaN quantum well structures. Phys Stat Solidi (a) 203:1729–1732CrossRefGoogle Scholar
  96. 96.
    Holec D, Zhang Y, Rao DVS, Kappers MJ, McAleese C, Humphreys CJ (2008) Equilibrium critical thickness for misfit dislocations in III-nitrides. J Appl Phys 104:123514-1–123514-7CrossRefGoogle Scholar
  97. 97.
    Holec D, Costa PMFJ, Kappers MJ, Humphreys CJ (2007) Critical thickness calculations for InGaN/GaN. J Cryst Growth 303:314–317CrossRefGoogle Scholar
  98. 98.
    Ponce FA, Srinivasan S, Bell A, Geng L, Liu R, Stevens M, Cai J, Omiya H, Marui H, Tanaka S (2003) Microstructure and electronic properties of InGaN alloys. Phys Status Solidi Basic Res 240:273–284CrossRefGoogle Scholar
  99. 99.
    Yoon DH, Lee KS, Yoo JB, Seong TY (2002) Reduction of threading dislocations in InGaN/GaN double hetero structure through the introduction of low-temperature GaN intermediate layer. Jpn J Appl Phys 41:1253CrossRefGoogle Scholar
  100. 100.
    Zhang QL, Meng FY, Crozier PA, Newman N, Mahajan S (2011) Effects of stress on phase separation in InxGa1−xN/GaN multiple quantum-wells. Acta Mater 59:3759–3769CrossRefGoogle Scholar
  101. 101.
    Doppalapudi D, Basu SN, Moustakas TD (1998) Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy. J Appl Phys 512:1389–1395CrossRefGoogle Scholar
  102. 102.
    Sugahara T, Hao M, Wang T, Nakagawa D, Naoi Y, Nishino K, Sakai S (1998) Role of dislocation in InGaN phase separation. Jpn J Appl Phys 37:6–10Google Scholar
  103. 103.
    Barnham KWJ, Duggan G (1990) A new approach to high-efficiency multi-band-gap solar cells. J Appl Phys 67:3490–3493CrossRefGoogle Scholar
  104. 104.
    Lai KY, Lin GJ, Lai YL, Chen YF, He JH (2010) Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells. Appl Phys Lett 103:173903-1-5Google Scholar
  105. 105.
    Lin YS, Ma KJ, Hsu C, Feng SW, Cheng YC, Liao CC, Yang CC, Chou CC, Lee CM, Chyi JI (2000) Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells. Appl Phys Lett 77:2988–2990CrossRefGoogle Scholar
  106. 106.
    Li Q, Wang GT (2010) Strain influenced indium composition distribution in GaN/InGaN core–shell nanowires. Appl Phys Lett 97:181107-1-3Google Scholar
  107. 107.
    O’Donnell KP, Martin RW, Middleton PG (1999) Origin of luminescence from InGaN diodes. Phys Rev Lett 82:237–240CrossRefGoogle Scholar
  108. 108.
    Chang HJ, Chen CH, Chen YF, Lin TY, Chen LC, Chen KH, Lan ZH (2005) Direct evidence of nanocluster-induced luminescence in InGaN epifilms. Appl Phys Lett 86:021911-3Google Scholar
  109. 109.
    Kaneta A, Funato M, Kawakami Y (2008) Nanoscopic recombination processes in InGaN/GaN quantum wells emitting violet, blue, and green spectra. Phys Rev B 78:125317-1–125317-7CrossRefGoogle Scholar
  110. 110.
    Li ZQ, Lestradet M, Xiao YG, Li S (2011) Effects of polarization charge on the photovoltaic properties of InGaN solar cells. Phys Status Solidi Appl Mater Sci 208:928–931CrossRefGoogle Scholar
  111. 111.
    Chang JY, Kuo YK (2011) Numerical study on the influence of piezoelectric polarization on the performance of p-on-n (0001)-face GaN/InGaN p–i–n solar cells. IEEE Electron Device Lett 32:937CrossRefGoogle Scholar
  112. 112.
    Le S, Honda Y, Amano H (2015) Effect of piezoelectric field on carrier dynamics in InGaN-based solar cells. J Phys D Appl Phys 49:1–7Google Scholar
  113. 113.
    Yang C, Wang X, Xiao H, Ran J, Wang C, Hu G, Wang X, Zhang X, Li J, Li J (2007) Photovoltaic effects in InGaN structures with p–n junctions. Phys Status Solidi (a) 204:4288–4291CrossRefGoogle Scholar
  114. 114.
    Chen X, Matthews KD, Hao D, Schaff WJ, Eastman LF, Walukiewicz W, Ager JW, Yu KM (2008) Characterization of Mg-doped InGaN and InAlN alloys grown by MBE for solar applications. In: 33rd IEEE Photovoltaic Specialists Conference, San Diego, CAGoogle Scholar
  115. 115.
    Misra P, Boney C, Medelci N, Starikov D, Freundlich A, Bensaoula A (2008) Fabrication and characterization of 2.3 eV InGaN photovoltaic devices. In: 33rd IEEE Photovoltaic Specialists Conference, San Diego, USAGoogle Scholar
  116. 116.
    Yamamoto A, Sugita K, Horie M, Ohmura Y, Islam MR, Hashimoto A (2008) Mg-doping and n+-p junction formation in MOVPE grown InxGa1−xN (x ~ 0.4). In: 33rd IEEE Photovoltaic Specialists Conference, San Diego, USAGoogle Scholar
  117. 117.
    Yamamoto A, Islam MR, Kang TT, Hashimoto A (2010) Recent advances in InN-based solar cells: status and challenges in InGaN and InAlN solar cells. Phys Status Solidi (c) 7:1309–1316CrossRefGoogle Scholar
  118. 118.
    Cai XM, Zeng SW, Zhang BP (2009) Favourable photovoltaic effects in InGaN pin homojunction solar cell. Electron Lett 45:1266–1267CrossRefGoogle Scholar
  119. 119.
    Cai X, Wang Y, Chen B, Liang MM, Liu WJ, Zhang JY, Lv XQ, Ying LY, Zhang BP (2013) Investigation of InGaN p–i–n homojunction and heterojunction solar cells. IEEE Photonics Technol Lett 25:59–62CrossRefGoogle Scholar
  120. 120.
    Felipa SV, Ajaya A, Redaellia A, Chauvatd MP, Ruteranad P, Cremela T, Rodrígueza MJ, Khenga K, Monroya E (2017) p–i–n InGaN homojunctions (10–40%In) synthesized by plasma-assisted molecular beam epitaxy with extended photo response to 600 nm. Sol Energy Mater Sol Cells 160:355–360CrossRefGoogle Scholar
  121. 121.
    Neufeld CJ, Toledo NG, Cruz SC, Iza M, DenBaars SP, Mishra UK (2008) High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap. Appl Phys Lett 93:143502-1–143502-3CrossRefGoogle Scholar
  122. 122.
    Zheng X, Horng RH, Wuu DS, Chu MT, Liao WY, Wu MH, Lin RM, Lu YC (2008) High-quality InGaN/GaN heterojunctions and their photovoltaic effects. Appl Phys Lett 93:261108-1–261108-3Google Scholar
  123. 123.
    Dahal R, Pantha B, Li J, Lin JY, Jiang HX (2009) InGaN/GaN multiple quantum well solar cells with long operating wavelengths. Appl Phys Lett 94:063505-1–063505-3CrossRefGoogle Scholar
  124. 124.
    Sheu JK, Yang CC, Tu SJ, Chang KH, Lee ML, Lai WC, Peng LC (2009) Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers. IEEE Electron Device Lett 30:225–227CrossRefGoogle Scholar
  125. 125.
    Jeng MJ, Lee YL, Chang LB (2009) Temperature dependences of Inx Ga1−xN multiple quantum well solar cells. J Phys D Appl Phys 42:105101-1–105101-6Google Scholar
  126. 126.
    Horng RH, Lin ST, Tsai YL, Chu MT, Liao WY, Wu MH, Lin RM, Lu YC (2009) Improved conversion efficiency of GaN/InGaN thin-film solar cells. IEEE Electron Device Lett 30:724–726CrossRefGoogle Scholar
  127. 127.
    Lai KY, Lin GJ, Lai YL, Chen YF, He JH (2010) Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells. Appl Phys Lett 96:081103-1–081103-3Google Scholar
  128. 128.
    Yang CC, Sheu JK, Liang XW, Huang MS, Lee ML, Chang KH, Tu SJ, Huang FW, Lai WC (2010) Enhancement of the conversion efficiency of GaN-based photovoltaic devices with AlGaN/InGaN absorption layers. Appl Phys Lett 97:021113-1–021113-3Google Scholar
  129. 129.
    Dahal R, Li J, Aryal K, Lin JY, Jiang HX (2010) InGaN/GaN multiple quantum well concentrator solar cells. Appl Phys Lett 97:073115-1–073115-3Google Scholar
  130. 130.
    Kuwahara Y, Fujii T, Fujiyama Y, Sugiyama T, Iwaya M, Takeuchi T, Kamiyama S, Akasaki I, Amano H (2010) Realization of nitride-based solar cell on freestanding GaN substrate. Appl Phys Express 3:111001-1–111001-3CrossRefGoogle Scholar
  131. 131.
    Kuwahara Y, Fujii T, Sugiyama T, Iida D, Isobe Y, Fujiyama Y, Morita Y, Iwaya M, Takeuchi T, Kamiyama S, Akasaki I, Amano H (2011) GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate. Appl Phys Express 4:0210011–0210013CrossRefGoogle Scholar
  132. 132.
    Fujii T, Kuwahara Y, Iida D, Fujiyama Y, Morita Y, Sugiyama T, Isobe Y, Iwaya M, Takeuchi T, Kamiyama S, Akasaki I, Amano H (2011) GaInN-based solar cells using GaInN/GaInN superlattices. Phys Status Solidi (c) 8:2463–2665CrossRefGoogle Scholar
  133. 133.
    Lang JR, Neufeld CJ, Hurni CA, Cruz SC, Matioli E, Mishra UK, Speck JS (2011) High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy. Appl Phys Lett 98:131115-1–131115-3Google Scholar
  134. 134.
    Matioli E, Neufeld C, Iza M, Cruz SC, Al-Heji AA, Chen X, Farrell RM, Keller S, DenBaars S, Mishra UK, Nakamura S, Speck J, Weisbuch C (2011) High internal and external quantum efficiency InGaN/GaN solar cells. Appl Phys Lett 98:021102-1–021102-3Google Scholar
  135. 135.
    Lee HC, Su YK, Lan WH, Lin JC, Huang KC, Lin WJ, Cheng YC, Yeh YH (2011) Study of electrical characteristics of GaN based photovoltaics with graded InxGa1−xN absorption layer. IEEE Photon Technol Lett 23:347–349CrossRefGoogle Scholar
  136. 136.
    Shim JP, Choe M, Jeon SR, Seo D, Lee T, Lee DS (2011) InGaN based p–i–n solar cells with graphene electrodes. Appl Phys Express 4:052302-1CrossRefGoogle Scholar
  137. 137.
    Lee YJ, Lee MH, Cheng CM, Yang CH (2011) Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate. Appl Phys Lett 98:263504-1–263504-3Google Scholar
  138. 138.
    Tran B et al (2012) Fabrication and characterization of n-In0.4Ga0.6N/p-Si solar cell. Sol Energy Mater Sol Cells 102:208–211CrossRefGoogle Scholar
  139. 139.
    Song JH, Oh JH, Shim JP, Min JH, Lee DS, Seong TY (2012) Improved efficiency of InGaN/GaN-based multiple quantum well solar cells by reducing contact resistance. Superlattices Microstruct 52:299–305CrossRefGoogle Scholar
  140. 140.
    Tsai YL, Lin CC, Han HV, Chang CK, Chen HC, Chen KJ, Lai WC, Sheu JK, Lai FL, Yu P, Kuo HC (2013) improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors. Sol Energy Mater Sol Cells 117:531–536CrossRefGoogle Scholar
  141. 141.
    Sang L, Liao M, Liang Q, Takeguchi M, Dierre B, Shen B, Sekiguchi T, Koide Y, Sumiya M (2014) Multilevel intermediate-band solar cell by InGaN/GaN quantum dots with a strain-modulated structure. Adv Mater 26:1414–1420CrossRefGoogle Scholar
  142. 142.
    Bai J, Yang CC, Athanasiou M, Wang T (2014) Efficiency enhancement of InGaN/GaN solar cells with nanostructures. Appl Phys Lett 104:2012–2016Google Scholar
  143. 143.
    Yu CT, Lai WC, Yen CH, Chang CW, Tu LW, Chang SJ (2015) Conversion efficiency improvement of InGaN/GaN multiple-quantum-well solar cells with ex situ AlN nucleation layer. IEEE Trans Electron Devices 62:1473–1477CrossRefGoogle Scholar
  144. 144.
    Fabien CAM, Maros A, Honsberg CB, Doolittle WA (2016) III-Nitride double-heterojunction solar cells with high in-content InGaN absorbing layers: comparison of large-area and small-area devices. IEEE J Photovolt 6:460–464CrossRefGoogle Scholar
  145. 145.
    Bi Z et al (2016) An InGaN-based solar cell including dual InGaN/GaN multiple quantum wells. IEEE Photonics Technol Lett 28:2117–2120CrossRefGoogle Scholar
  146. 146.
    Belghouthi R, Salvestrini JP, Gazzeh MH, Chevallier C (2016) Analytical modeling of polarization effects in InGaN double hetero-junction p–i–n solar cells. Superlattices Microstruct 100:168–178CrossRefGoogle Scholar
  147. 147.
    Wen Y, Wang Y, Watanabe K, Sugiyama M, Nakano Y (2012) Enhanced carrier escape in MSQW solar cell and its impact on photovoltaics performance. IEEE J Photovolt 2:221–226CrossRefGoogle Scholar

Copyright information

© CSI Publications 2017

Authors and Affiliations

  1. 1.Microelectronics and VLSI Design Group, Department of Electronics and Communication EngineeringNational Institute of Technology, SilcharSilcharIndia

Personalised recommendations