Skip to main content

Advertisement

Log in

Fabrication and characterization of organic semiconductor based photodetector for optical communication

  • Special Issue Visvesvaraya 2016 of CSIT
  • Published:
CSI Transactions on ICT Aims and scope Submit manuscript

Abstract

Organic semiconductor based photodetectors would be very attractive, innovative and well suited for light detection applications. The requirement of organic semiconductor in photonic device is to low cost, light weight, mechanical flexibility, chemical modification, tunability of absorption range with co-evaporation and co-mixing of molecules and easy to integrate. In fact, organic optoelectronics devices are more eco-friendly and energy efficient. In this research work, main objective is to fabricate and characterize organic semiconductor based photo detector with a proper choice of organic semiconductor as donor and acceptor and optimize by employing diversified organic semiconductors for fast response time, high photosensitivity, high quantum efficiency, low dark current, large dynamic range and long life time. The equivalent circuit model of the proposed organic photo detector (OPD) structure has been designed and simulated using MATLAB Simulink in which Rubrene and BPPC are used as active layer of OPD. 500 MHz of Operating frequency is to be found in this proposed OPD that is much higher than the speed of the red light illumined Bi-layer OPDs reported till today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(Fig. reused from Ref. [10])

Fig. 4

(Fig. reused from Ref. [10])

Fig. 5

(Fig. reused from Ref. [10])

Fig. 6

(Fig. reused from Ref. [10])

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York

    Google Scholar 

  2. Konstantatos G, Sargent EH (2010) Nanostructured materials for photon detection. Nat Nanotechnol 5:391

    Article  Google Scholar 

  3. Mueller T, Xia F, Avouris P (2010) Graphenephotodetectors for high-speed optical communications. Nat Photon 4:297

    Article  Google Scholar 

  4. Mok SM, Yan F, Chan HLW (2008) Organic phototransistor based on poly (3-hexylthiophene)/TiO2nanoparticle composite. Appl Phys Lett 93:023310

    Article  Google Scholar 

  5. Sun Z, Liu C, Yang S et al (2011) Enhancement of hole mobility of poly (3-hexylthiophene) induced by titania nanorods in composite films. Adv Mater 23:3648

    Article  Google Scholar 

  6. Yan F, Li J, Mok SM (2009) Highly photosensitive thin film transistors based on a composite of poly(3-hexylthiophene) and titania nanoparticles. J Appl Phys 106:074501

    Article  Google Scholar 

  7. Sun Z, Liu Z, Li J et al (2012) Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv Mater 24:5878

    Article  Google Scholar 

  8. Baeg KJ, Binda M, Natali D et al (2013) Organic light detectors: photodiodes and phototransistors. Adv Mater 25(32):4267

    Article  Google Scholar 

  9. Clark J, Lanzani G (2010) Organic photonics for communications. Nat Photon 4:438

    Article  Google Scholar 

  10. Wang Y (2014) Low threshold organic semiconductor lasers hybrid optoelectronics and applications as a explosive sensors. Springer, ISBN-978-3-319-01266-7

  11. Peumans P, Bulovi V, Forrest SR (2000) Efficient, high-bandwidth organic multilayer photodetectors. Appl Phys Lett 76:3855

    Article  Google Scholar 

  12. Morimune T, Kajii H, Ohmori Y (2006) Photoresponse properties of a high-speed organic photodetector based on copper-phthalocyanine under red light illumination. IEEE Photon Technol Lett 18(24):2262

    Article  Google Scholar 

  13. Ohmori Y, Kajii H, Kaneko M et al (2004) Realization of polymeric optical integrated devices utilizing organic light-emitting diodes and photodetectors fabricated on a polymeric waveguide. IEEE J Sel Top Quantum Electron 10(1):70

    Article  Google Scholar 

  14. Punke M, Valouch S, Kettlitz SW et al (2008) Optical data link employing organic light-emitting diodes and organic photodiodes as optoelectronic components. J Lightwave Technol 26(7):816

    Article  Google Scholar 

  15. Arredondo B, Romero B, Pena JMS et al (2013) Visible light communication system using an organic bulk heterojunction photodetector. Sensors 13(9):12266

    Article  Google Scholar 

  16. Tsai WW, Chao YC, Chen EC et al (2009) Increasing organic vertical carrier mobility for the application of high speed bilayered organic photodetector. Appl Phys Lett 95:213308

    Article  Google Scholar 

  17. Yang D, Zhou X, Ma D (2013) Fast response organic photodetectors with high detectivity based on rubrene and C60. Org Electron 14(11):3019

    Article  Google Scholar 

  18. Wang JB, Li WL, Chu B et al (2011) High speed responsive near infrared photodetector focusing on 808 nm radiation using hexadecafluoro-copper-phthalocyanine as the acceptor. Org Electron 12:34

    Article  Google Scholar 

  19. Binda M, Agostinelli T, Caironi M et al (2009) Fast and air stable near infrared organic detector based on squaraine dye. Org Electron 10:1314

    Article  Google Scholar 

  20. Binda M, Iacchetti A, Natali D et al (2011) High detectivitysquaraine-based near infrared photodetector with nA/cm2 dark current. Appl Phys Lett 98:073303

    Article  Google Scholar 

  21. Chen EC, Chang CY, Shieh JT et al (2010) Polymer photodetector with voltage-adjustable photocurrent spectrum. Appl Phys Lett 96:043507

    Article  Google Scholar 

  22. Wu SH, Li WL, Chu B et al (2011) High performance small molecule photodetector with broad spectral response range from 200 to 900 nm. Appl Phys Lett 99:023305

    Article  Google Scholar 

  23. Menke SM, Pandey R, Holmes RJ (2012) Tandem organic photodetectors with tunable, broadband response. Appl Phys Lett 101:223301

    Article  Google Scholar 

  24. Wang X, Li H, Su Z et al (2014) Efficient organic near-infrared photodetectors based on lead phthalocyanine/C60 heterojunction. Org Electron 15:2367–2371

    Article  Google Scholar 

  25. Li Lisheng, Yuying H, Junbiao P et al (2014) Highly responsive organic near-infrared photodetectors based on a porphyrin small molecule. J Mater Chem C 2:1372–1375

    Article  Google Scholar 

  26. Li L, Zhang F, Wang J et al (2015) Achieving EQE of 16,700% in P3HT:PC71BM based photodetectors by trap-assisted photomultiplication. Sci Rep 5:9181. doi:10.1038/srep09181

    Article  Google Scholar 

  27. Su Z, Hou F, Wang X et al (2015) High-performance organic small-molecule panchromatic photodetectors. ACS Appl Mater Interfaces 7(4):2529

    Article  Google Scholar 

  28. Yang D, Zhou X, Wang Y et al (2016) Deep ultraviolet-to-NIR broad spectral response organic photodetectors with large gain. J Mater Chem C 4:2160

    Article  Google Scholar 

  29. Yotter RA, Wilson DM (2003) Review of Photodetector for Sensing Light Emitting Reporters in Biological System. IEEE Sens J 3(3):288

    Article  Google Scholar 

  30. Borel T (2013) Top-contact lateral organic photodetectors for deep ultraviolet applications, thesis. Electrical and Computer Engineering—Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada

  31. Hammond WT (2011) Design and fabrication of organic semiconductor photodiodes. Thesis, The Graduate School of The University of Florida, University of Florida, Gainesville, Florida, United State

  32. Higashi Y, Kim KS, Jeon HG (2010) Enhancing spectral contrast in organic red-light photodetectors based on a light-absorbing and exciton-blocking layered system. J Appl Phys 108:034502

    Article  Google Scholar 

  33. Kettlitz SW, Mescher J, Christ NS et al (2013) Eliminating RC-Effects in transient photocurrent measurements on organic photodiodes. IEEE Photon Technol Lett 25(7):682

    Article  Google Scholar 

  34. Swe TN, Yeo KS (2001) An accurate photodiode model for DC and high frequency SPICE circuit simulation. Nanyang Technological University, School of Electrical and Electronic Engineering Nanyang Avenue, Singapore, vol 1, ISBN 0-9708275-0-4, 368

  35. Kim H, Gilmore CM, Pique A et al (1999) Electrical, optical and structural properties of indium–tin–oxide thin flims for organic light emitting devices. J Appl Phys 86:6451

    Article  Google Scholar 

  36. https://en.m.wikipedia.org/wiki/Electrical_resistivity_and_conductivity

  37. Barıs B, Ozdemir HG, Tugluoglu N et al (2014) Optical dispersion and dielectric properties of rubrene organi semiconductors thin flim. J Mater Sci Mater Electron 24(8):3586

    Article  Google Scholar 

  38. Langhals H (1988) Dyes with high dielectric constants. Chem Phys Lett 150(3):321

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debarati Nath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, D., Dey, P., Deb, D. et al. Fabrication and characterization of organic semiconductor based photodetector for optical communication. CSIT 5, 149–160 (2017). https://doi.org/10.1007/s40012-016-0150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40012-016-0150-8

Keywords

Navigation