CSI Transactions on ICT

, Volume 5, Issue 2, pp 189–193 | Cite as

Multi-input and multi-output SOI (MIMO-SOI) platform for silicon photonics

  • Ramesh K. Gupta
  • Bijoy K. DasEmail author
Special Issue Visvesvaraya 2016 of CSIT


We have proposed and demonstrated a method for the fabrication of a SOI platform with custom-design device layer thickness (<1 μm) which can be accessed by any desired number of adiabatically tapered single-mode input/output waveguides (multi-input multi-output waveguides) of widths and heights >1 μm, operating at λ ~ 1550 nm. The input/output waveguides can be pigtailed with standard single-mode fiber with lensed tip ensuring modal overlap of >70% (coupling loss <1.5 dB). Such a multi-input multi-output SOI platform will facilitate for CMOS silicon photonics based on-chip applications with an additional usage freedom of device layer thickness. Moreover, it can be potentially used to design SOI based stand-alone devices which can be useful at transmitters/repeaters for short-haul/long-haul optical communication.


Silicon photonics platform Spot size converters Optical interconnects Integrated optoelectronics 



This work is being pursued with in the scope of silicon photonics research activities at the Centre for NEMS and Nanophotonics (CNNP), IIT Madras; funded by MeitY, Govt. of India. The authors also gratefully acknowledge MeitY for the research fellowship to Ramesh K. Gupta under Visvesvaraya PhD scheme.


  1. 1.
    Sun C, Wade MT, Lee Y, Orcutt JS, Alloatti L, Georgas MS, Waterman AS, Shainline JM, Avizienis RR, Lin S et al (2015) Single-chip microprocessor that communicates directly using light. Nature 528(7583):534–538CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Arakawa Y, Nakamura T, Urino Y, Fujita T (2013) Silicon photonics for next generation system integration platform. IEEE Commun Mag 51(3):72–77CrossRefGoogle Scholar
  4. 4.
    Fischer U, Zinke T, Kropp J-R, Arndt F, Petermann K (1996) 0.1 db/cm waveguide losses in single-mode SOI rib waveguides. IEEE Photon Technol Lett 8(5):647–648CrossRefGoogle Scholar
  5. 5.
    Xu Q, Almeida VR, Panepucci RR, Lipson M (2004) Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt Lett 29(14):1626–1628CrossRefGoogle Scholar
  6. 6.
    Xu D-X, Schmid JH, Reed GT, Mashanovich GZ, Thomson DJ, Nedeljkovic M, Chen X, Van Thourhout D, Keyvaninia S, Selvaraja SK (2014) Silicon photonic integration platform have we found the sweet spot? IEEE J Sel Top Quantum Electron 20(4):189–205CrossRefGoogle Scholar
  7. 7.
    Andreani LC, Gerace D, Passoni M, Bozzola A, Carroll L (2016) Optimizing grating couplers for silicon photonics. In: Transparent optical networks (ICTON), 2016 18th international conference on IEEE, pp 1–4Google Scholar
  8. 8.
    Shi Y, Ma K, Dai D (2016) Sensitivity enhancement in si nanophotonic waveguides used for refractive index sensing. Sensors 16(3):324CrossRefGoogle Scholar
  9. 9.
    Van Laere F, Roelkens G, Ayre M, Schrauwen J, Taillaert D, Van Thourhout D, Krauss TF, Baets R (2007) Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides. J Lightwave Technol 25(1):151–156CrossRefGoogle Scholar
  10. 10.
    Cardenas J, Poitras CB, Luke K, Luo L-W, Adrian Morton P, Lipson M (2014) High coupling efficiency etched facet tapers in silicon waveguides. IEEE Photon Technol Lett 26(23):2380–2382CrossRefGoogle Scholar
  11. 11.
    Wang J, Xuan Yi, Lee C, Niu B, Liu L, Liu GN, Qi Mi (2016) Low-loss and misalignment-tolerant fiber-to-chip edge coupler based on double-tip inverse tapers. In: Optical fiber communication conference. Optical Society of America, pp M2I–6.Google Scholar
  12. 12.
    Chandran S, Das BK (2015) Surface trimming of silicon photonics devices using controlled reactive ion etching chemistry. Photon Nanostruct Fundam Appl 15:32–40CrossRefGoogle Scholar
  13. 13.
    Chandran S, Sundaram SM, Das BK (2015) Method and apparatus for modifying dimensions of a waveguide. Patent filed (Indian Patent, 3799/CHE/2015, US Patent, 15/218,300)Google Scholar
  14. 14.
    Urino Y, Shimizu T, Okano M, Hatori N, Ishizaka M, Yamamoto T, Baba T, Akagawa T, Akiyama S, Usuki T et al (2011) First demonstration of high density optical interconnects integrated with lasers, optical modulators, and photodetectors on single silicon substrate. Opt Express 19(26):B159–B165CrossRefGoogle Scholar
  15. 15.
    Hayakawa A, Ebe H, Chen Y, Mori T (2016) silicon photonics optical transceiver for high-speed, high-density and low-power lsi interconnect. Fujitsu Sci Tech J 52(1):19–26Google Scholar

Copyright information

© CSI Publications 2016

Authors and Affiliations

  1. 1.Integrated Optoelectronics Lab, Department of Electrical EngineeringIIT MadrasChennaiIndia
  2. 2.Department of Electrical EngineeringIIT MadrasChennaiIndia

Personalised recommendations