Skip to main content

Advertisement

Log in

Development of an Experimental Model of Vasculitis Using Ovalbumin Lipopolysaccharide in Rats

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Vasculitis is considered a veiled threat for several pathologic conditions, and consequently, there is a need to develop a distinct animal model for drug testing. An adjunct use of antigens, ovalbumin (OVA), and lipopolysaccharide (LPS) has been reported in exaggerating inflammation. However, the effects of OVA and LPS individually or in combination have not yet been established in inducing vasculitis. The present study examined effects of OVA and LPS on vasculitis induction in rats. Rats treated with OVA (5 mg/kg, i.p.) and LPS (1 mg/kg, i.p.) showed a significant increase in circulating inflammatory cells, erythrocyte sedimentation rate, inflammatory cytokines (IL-1β, IL-6, and TNF-α), c-reactive protein, anti-neutrophil cytoplasmic antibodies (anti-myeloperoxidase (MPO), anti-proteinase-3 (PR3)), liver function enzymes (AST, ALT), and kidney damage markers (BUN, Creatinine) in the serum. Matrix metalloproteinase (MMP)-9 levels were significantly increased in the temporal, carotid, aortic, iliac, mesentery, and coronary arteries. In addition, the diseased group developed hematuria and proteinuria, which was incomparable to the normal group. Histopathology further revealed significant neutrophil infiltration accompanied by fibrinolytic necrosis, indicating vascular injury and hyperplasia, leading to extracellular matrix degradation. In conclusion, the combination of ovalbumin and lipopolysaccharide has developed vasculitis-like conditions, which suggest OVA-LPS can be a new experimental model for vasculitis and be considered in future therapeutic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Miller A, Chan M, Wiik A, Misbah SA, Luqmani RA (2010) An approach to the diagnosis and management of systemic vasculitis. Clin Exp Immunol 160(2):143–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ben Ahmed M, Louzir H (2011) Immunological aspects of systemic vasculitis. Syst Vasc 25–42

  3. Gómez-Puerta JA, Bosch X (2009) Anti-neutrophil cytoplasmic antibody pathogenesis in small-vessel vasculitis: an update. Am J Pathol 175(5):1790–1798

    Article  PubMed  PubMed Central  Google Scholar 

  4. Weyand CM, Goronzy JJ (2003) Medium- and large-vessel vasculitis. N Engl J Med 349(2):160–169

    Article  CAS  PubMed  Google Scholar 

  5. Cid MC (2002) Endothelial cell biology, perivascular inflammation, and vasculitis. Cleve Clin J Med 69(Suppl 2):45–49

    Google Scholar 

  6. Lehman TJ, Walker SM, Mahnovski V, McCurdy D (1985) Coronary arteritis in mice following the systemic injection of group B Lactobacillus casei cell walls in aqueous suspension. Arthritis Rheum 28(6):652–659

    Article  CAS  PubMed  Google Scholar 

  7. Nagi-Miura N, Shingo Y, Adachi Y, Ishida-Okawara A, Oharaseki T, Takahashi K, Naoe S, Suzuki K, Ohno N (2004) Induction of coronary arteritis with administration of CAWS (Candida albicans water-soluble fraction) depending on mouse strains. Immunopharmacol Immunotoxicol 26(4):527–543

    Article  PubMed  Google Scholar 

  8. Kallenberg CG (2007) Antineutrophil cytoplasmic autoantibody-associated small-vessel vasculitis. Curr Opin Rheumatol 19(1):17–24

    Article  PubMed  Google Scholar 

  9. Little MA, Smyth L, Salama AD, Mukherjee S, Smith J, Haskard D, Nourshargh S, Cook HT, Pusey CD (2009) Experimental autoimmune vasculitis: an animal model of anti-neutrophil cytoplasmic autoantibody-associated systemic vasculitis. Am J Pathol 174(4):1212–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shochet L, Holdsworth S, Kitching AR (2020) Animal models of ANCA associated vasculitis. Front Immunol 11:525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huugen D, Xiao H, van Esch A, Falk RJ, Peutz-Kootstra CJ, Buurman WA, Tervaert JW, Jennette JC, Heeringa P (2005) Aggravation of anti-myeloperoxidase antibody-induced glomerulonephritis by bacterial lipopolysaccharide: role of tumor necrosis factor-alpha. Am J Pathol 167(1):47–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharif MK, Saleem M, Javed K (2018) Role of materials science in food bioengineering. In: Handbook of food bioengineering, Academic Press, UK, pp 505–537

  13. Borish LC, Steinke JW (2003) 2.Cytokines and chemokines. J Allergy Clin Immunol 111(2 Suppl):S460-475

    Article  CAS  PubMed  Google Scholar 

  14. Pober JS (2002) Endothelial activation: intracellular signaling pathways. Arthritis Res 4(Suppl 3):S109–S116

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gearing AJ, Beckett P, Christodoulou M, Churchill M, Clements JM, Crimmin M, Davidson AH, Drummond AH, Galloway WA, Gilbert R et al (1995) Matrix metalloproteinases and processing of pro-TNF-alpha. J Leukoc Biol 57(5):774–777

    Article  CAS  PubMed  Google Scholar 

  16. Thakur VR, Mehta AA (2021) Ovalbumin/lipopolysaccharide induced vasculitis in rats: a new predictive model. J Basic Clin Physiol Pharmacol 33(4):445–455

    Article  PubMed  Google Scholar 

  17. Buckley CD, Rainger GE, Nash GB, Raza K (2005) Endothelial cells, fibroblasts and vasculitis. Rheumatology 44(7):860–863

    Article  CAS  PubMed  Google Scholar 

  18. Kanemitsu H, Matsunawa M, Wakabayashi K, Sato M, Takahashi R, Odai T, Isozaki T, Yajima N, Miwa Y, Kasama T (2009) Increased serum levels of macrophage migration inhibitory factor (MIF) in patients with microscopic polyangiitis. Open Access Rheumatol 1:1–88

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schönermarck U, Csernok E, Gross WL (2015) Pathogenesis of anti-neutrophil cytoplasmic antibody-associated vasculitis: challenges and solutions 2014. Nephrol Dial Transplant 30(Suppl 1):i46–i52

    PubMed  Google Scholar 

  20. Mohammad AJ, Hot A, Arndt F, Moosig F, Guerry MJ, Amudala N, Smith R, Sivasothy P, Guillevin L, Merkel PA, Jayne DR (2016) Rituximab for the treatment of eosinophilic granulomatosis with polyangiitis (Churg-Strauss). Ann Rheum Dis 75(2):396–401

    Article  CAS  PubMed  Google Scholar 

  21. Liu T, Zhang L, Joo D et al (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023

    Article  PubMed  PubMed Central  Google Scholar 

  22. Miraghazadeh B, Cook MC (2018) Nuclear factor-kappaB in autoimmunity: man and mouse. Front Immunol 9:613

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sundy JS, Haynes BF (2000) Cytokines and adhesion molecules in the pathogenesis of vasculitis. Curr Rheumatol Rep 2(5):402–410

    Article  CAS  PubMed  Google Scholar 

  24. Zhang H, Park Y, Wu J, Xp C, Lee S, Yang J, Dellsperger KC, Zhang C (2009) Role of TNF-alpha in vascular dysfunction. Clin Sci 116(3):219–230

    Article  CAS  Google Scholar 

  25. Kraaij T, Kamerling SWA, van Dam LS, Bakker JA, Bajema IM, Page T, Brunini F, Pusey CD, Toes REM, Scherer HU, Rabelink TJ, van Kooten C, Teng YKO (2018) Excessive neutrophil extracellular trap formation in ANCA-associated vasculitis is independent of ANCA. Kidney Int 94(1):139–149

    Article  CAS  PubMed  Google Scholar 

  26. Hilhorst M, van Paassen P, Tervaert JW, Registry LR (2015) Proteinase 3-ANCA vasculitis versus myeloperoxidase-ANCA vasculitis. J Am Soc Nephrol 26(10):2314–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. De Rossi M, Bernasconi P, Baggi F, de Waal MR, Mantegazza R (2000) Cytokines and chemokines are both expressed by human myoblasts: possible relevance for the immune pathogenesis of muscle inflammation. Int Immunol 12(9):1329–1335

    Article  PubMed  Google Scholar 

  28. Lau AC, Duong TT, Ito S, Yeung RS (2008) Matrix metalloproteinase 9 activity leads to elastin breakdown in an animal model of Kawasaki disease. Arthritis Rheum 58(3):854–863

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present study was supported by grant from Student Startup Innovation Policy (SSIP) scheme (Grant Number 215/2019), Government of Gujarat, India.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita A. Mehta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A new animal model for Vasculitis has been established using OVA and LPS, which were previously used only as adjuncts to exaggerate the inflammatory process in Vasculitis. OVA and LPS have suggested a possible simplified animal model for vasculitis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, V.R., Mehta, A.A. Development of an Experimental Model of Vasculitis Using Ovalbumin Lipopolysaccharide in Rats. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. (2024). https://doi.org/10.1007/s40011-024-01548-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40011-024-01548-w

Keywords

Navigation