Skip to main content
Log in

Chemical Arms Race: Occurrence of Chemical Defense and Growth Regulatory Phytochemical Gradients in Insect-Induced Foliar Galls

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Gall-inducing insects are highly specialized in modifying phenotypes in their hosts. Phytochemical manipulations in galling sites induce tissue growth and differentiation and also refurbish defense response in plant against herbivore infestation. Therefore, plant–herbivore interaction coevolves and gives rise to a chemical arms race by employing refined chemical defense and detoxification mechanisms in the plant. Under this contextual, we aimed to investigate how phytochemical gradients accumulate in galling sites than the non-galled tissue. Analyzing 18 phytochemicals from underdeveloped and developed foliar gall tissue morphs among three model plants, we report that phytochemical manipulation builds gradually from non-galled (non-infested) to underdeveloped gall (marginal infestation) and from underdeveloped to developed (high infestation) gall tissue. A complex chemical surge is played in galling tissue where the phytochemicals perform a dual role in promotion of tissue growth as well as in execution of endogenous defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arimura GI, Kost C, Boland W (2005) Herbivore-induced, indiretplandefences. Biochimica et Biophysica Acta Mol Cell Biol Lipids 1734(2):91–111. https://doi.org/10.1016/j.bbalip.2005.03.001

    Article  CAS  Google Scholar 

  2. Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-plant biology. Oxford: Oxford University Press, 421

  3. Fatouros NE, Bukovinszkine’Kiss G, Kalkers LA, Gamborena RS, Dicke M, Hilker M (2005) Oviposition-induced plant cues: do they arrest Trichogramma wasps during host location? Entomologia Experimentalis et Applicata. 115(1):207–215. https://doi.org/10.1111/j.1570-7458.2005.00245.x

    Article  Google Scholar 

  4. Amorim DO, Ferreira BG, Fleury G (2017) Plant potentialities determine anatomical and histochemical diversity in MikaniaglomerataSpreng. galls. Brazilian J Botany 40(2):517–527. https://doi.org/10.1007/s40415-016-0357-9

    Article  Google Scholar 

  5. Harris MO, Pitzschke A (2020) Plants make galls to accommodate foreigners: some are friends, most are foes. New Phytol 225(5):1852–1872. https://doi.org/10.1111/nph.16340

    Article  PubMed  Google Scholar 

  6. Melnyk CW (2017) Connecting the plant vasculature to friend or foe. New Phytol 213(4):1611–1617. https://doi.org/10.1111/nph.14218

    Article  CAS  PubMed  Google Scholar 

  7. Sugio A, MacLean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA (2011) Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annual Rev Phytopathol. 49:175–195. https://doi.org/10.1146/annurev-phyto-072910-09532

    Article  CAS  Google Scholar 

  8. Fay PA, Hartnett DC, Knap AK (1993) Increased photosynthesis and water potentials in Silphiumintegrifolium galled by cynipid wasps. Oecologia 93(1):114–120

    Article  Google Scholar 

  9. Erb M, MeldauS HGA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17(5):250–259. https://doi.org/10.1016/j.tplants.2012.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harris MO, Freeman TP, Rohfritsch O, Anderson KG, Payne SA, Moore JA (2006) Virulent Hessian fly (Diptera: Cecidomyiidae) larvae induce a nutritive tissue during compatible interactions with wheat. Ann Entomol Soc Am 99(2):305–316. https://doi.org/10.1603/0013-8746(2006)099[0305:VHFDCL]2.0.CO;2

    Article  Google Scholar 

  11. Kang Z, Tang C, Zhao J, Cheng Y, Liu J, Guo J, Wan, X, Chen X (2017) Wheat-Pucciniastriiformis interactions. In: stripe rust pp 155–282

  12. Nogueira RM, Costa EC, Silva JS, Isaias RMDS (2018) Structural and histochemical profile of Lopesia sp. Rübsaamen, 1908 pinnula galls on Mimosa tenuiflora (Willd.) Poir.in a Caatinga environment. Hoehnea 45(2):314–322. https://doi.org/10.1590/2236-8906-80/2017

    Article  Google Scholar 

  13. Taper ML, Case TJ (1987) Interactions between oak tannins and parasite community structure: unexpected benefits of tannins to cynipid gall-wasps. Oecologia 71(2):254–261

    Article  CAS  Google Scholar 

  14. Tooker JF, De Moraes CM (2009) A gall-inducing caterpillar species increases essential fatty acid content of its host plant without concomitant increases in phytohormone levels. Mol Plant-Microbe Interactions. 22(5):551–559. https://doi.org/10.1094/MPMI-22-5-0551

    Article  CAS  Google Scholar 

  15. Tooker JF, De Moraes CM (2011) Feeding by a gall-inducing caterpillar species alters levels of indole-3-acetic and abscisic acid in Solidagoaltissima (Asteraceae) stems. Arthropod-Plant Interactions 5(2):115–124. https://doi.org/10.1007/s11829-010-9120-5

    Article  Google Scholar 

  16. Davies PJ (2004) Plant hormones: biosynthesis, signal transduction, action! edn 3. Kluwer Academic Pub, Netherlands, p 750

    Google Scholar 

  17. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100(4):681–697. https://doi.org/10.1093/aob/mcm079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oliveira DC, Isaias RMS, Fernandes GW, Ferreira BG, Carneir RGS, Fuzaro L (2016) Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds. J Insect Physiol 84:103–113. https://doi.org/10.1016/j.jinsphys.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  19. Rezende UC, Moreira ASFP, Kuster VC, de Oliveira DC (2018) Structural, histochemical and photosynthetic profiles of galls induced by Eugeniamyiadispar (Diptera: Cecidomyiidae) on the leaves of Eugenia uniflora (Myrtaceae).Revista de BiologíaTropical 66(4), 1469–1480. http://dx.doi.org/https://doi.org/10.15517/rbt.v66i4.32531

  20. Passardi F, Longe D, Penel C, Dunand C (2004) The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry 65(13):1879–1893. https://doi.org/10.1016/j.phytochem.2004.06.023

    Article  CAS  PubMed  Google Scholar 

  21. Arimura GI, Kost C, Boland W (2005) Herbivore-induced, indirect plandefences. Biochimica et BiophysicaActa -Mol Cell Biol Lipids 1734(2):91–111. https://doi.org/10.1016/j.bbalip.2005.03.001

    Article  CAS  Google Scholar 

  22. Turlings TC, McCall PJ, Alborn HT, Tumlinson JH (1993) An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. J Chem Ecol 19(3):411–425

    Article  CAS  Google Scholar 

  23. Diezel C, von Dahl GCC, Baldwin IT (2009) Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling. Plant Physiol 150(3):1576–1586. https://doi.org/10.1104/pp.109.139550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wool D (2004) Galling aphids: specialization, biological complexity, and variation. Annual Rev Entomol 49(1):175–192. https://doi.org/10.1146/annurev.ento.49.061802.123236

    Article  CAS  Google Scholar 

  25. Harris MO, Pitzschke A (2020) Plants make galls to accommodate foreigners: some are friends, most are foes. New Phytol 225(5):1852–1872. https://doi.org/10.1111/nph.16340

    Article  PubMed  Google Scholar 

  26. Ghosh D (2006) Bark is the hallmark. Resonance 11(3):41–50

    Article  Google Scholar 

  27. Susy A, Switi R, Dhara G (2013) Anatomy and ontogenesis of foliar galls induced by Odinadiplosisodinae (Diptera: Cecidomyiidae) on Lanneacoramandelica (Anacardiaceae). Actaentomologicaserbica 18(1/2):161–175

    Google Scholar 

  28. Devaraj KB, Gowda LR, Prakash V (2008) An unusual thermostable aspartic protease from the latex of Ficus racemosa (L.). Phytochemistry 69(3):647–655. https://doi.org/10.1016/j.phytochem.2007.09.003

    Article  CAS  PubMed  Google Scholar 

  29. Tetgure SR, Borse AU, Sankapal BR, Garole VJ, Garole DJ (2015) Green biochemistry approach for synthesis of silver and gold nanoparticles using Ficus racemosa latex and their pH-dependent binding study with different amino acids using UV/Vis absorption spectroscopy. Amino Acids 47(4):757–765. https://doi.org/10.1007/s00726-014-1906-9

    Article  CAS  PubMed  Google Scholar 

  30. Azarkan M, Wintjens R, Looze Y, Baeyens-Volant D (2004) Detection of three wound-induced proteins in papaya latex. Phytochemistry 65:525–534. https://doi.org/10.1016/j.phytochem.2003.12.006

    Article  CAS  PubMed  Google Scholar 

  31. Price PW, Clancy KM (1986) Interactions among three trophic levels: gall size and parasitoid attack. Ecology 67(6):1593–1600. https://doi.org/10.2307/1939090

    Article  Google Scholar 

  32. Rehill BJ, Schultz JC (2001) Hormaphishamamelidis and gall size: a test of the plant vigor hypothesis. Oikos 95(1):94–104. https://doi.org/10.1034/j.1600-0706.2001.950111.x

    Article  Google Scholar 

  33. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem. 193:265–275

    Article  CAS  Google Scholar 

  34. Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  35. Zhang J, Kirkham MB (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35(5):785–791. https://doi.org/10.1093/oxfordjournals.pcp.a078658

    Article  CAS  Google Scholar 

  36. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  37. Malick CP, Singh MB (1980) Phenolics. Kalyani Publishers, New Delhi, Plant enzymology and histoenzymology, p 286

    Google Scholar 

  38. Hatfield RD, Jung HJG, Ralph J, Buxton DR, Weimer PJ (1994) A comparison of the insoluble residues produced by the Klason lignin and acid detergent lignin procedures. J Sci Food Agric 65(1):51–58. https://doi.org/10.1002/jsfa.2740650109

    Article  CAS  Google Scholar 

  39. Yamaguchi H, Tanaka H, Hasegawa M, Tokuda M, Asami T, Suzuki Y (2012) Phytohormones and willow gall induction by a gall-inducing sawfly. New Phytol. 196(2):586–595. https://doi.org/10.1111/j.1469-8137.2012.04264.x

    Article  CAS  PubMed  Google Scholar 

  40. Tanaka Y, Okada K, Asami T, Suzuki Y (2013) Phytohormones in Japanese mugwort gall induction by a gall-inducing gall midge. Biosci Biotechnol Biochem. 77(9):1942–1948. https://doi.org/10.1271/bbb.130406

    Article  CAS  PubMed  Google Scholar 

  41. Silva ÉAS, Saboia G, Jorge NC, Hoffmann C, dos Santos Isaias RM, Soares GL, Zini CA (2017) Development of a HS-SPME-GC/MS protocol assisted by chemometric tools to study herbivore-induced volatiles in Myrciasplendens. Talanta 175:9–20. https://doi.org/10.1016/j.talanta.2017.06.063

    Article  CAS  Google Scholar 

  42. Takahashi K, Akaike T, Sato K, Mori K, Maeda H (1993) Superoxide anion generation by Pacific oyster (Crassostreagigas) hemocytes: identification by electron spin resonance spintrapping and chemiluminescence analysis. Comparative Biochem Physiol Part B: Comparative Biochem 105(1):32–41

    Article  Google Scholar 

  43. Kaur G, Hamid H, Ali A, Athar Alam MS., M, (2004) Antiinflammatory evaluation of alcoholic extract of galls of Quercusinfectoria. J Ethnopharmacol. 90(2–3):285–292. https://doi.org/10.1007/s11738-014-1528-6

    Article  CAS  PubMed  Google Scholar 

  44. Lipetz J, Galston AW (1959) Indole acetic acid oxidase and peroxidase activities in normal and crown gall tissue cultures of Parthenocissustricuspidata. Am J Bot 46(3):193–196. https://doi.org/10.1002/j.1537-2197.1959.tb07003.x

    Article  CAS  Google Scholar 

  45. Isaias RMS, Oliveira DC, Moreira ASFP, Soares GLG, Carneiro RGS (2015) The imbalance of redox homeostasis in arthropod-induced plant galls: mechanisms of stress generation and dissipation

  46. Xu J, Duan X, Yang J, Beeching JR, Zhang P (2013) Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiol. 161(3):1517–1528. https://doi.org/10.1104/pp.112.212803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Donaghy L, Kraffe E, Le Goïc N, Lambert C, Volety AK, Soudant P (2012) Reactive oxygen species in unstimulatedhemocytes of the Pacific oyster Crassostreagigas: a mitochondrial involvement. PLoS ONE 7(10):46594. https://doi.org/10.1371/journal.pone.0046594

    Article  CAS  Google Scholar 

  48. Son YO, Wang L, Poyil P, Budhraja A, Hitron JA, Zhang Z, Lee JC, Shi X (2012) Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling. Toxicol Appl Pharmacol 264(2):153–160. https://doi.org/10.1016/j.taap.2012.07.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mukherjee S, Ray M, Dutta MK, Acharya A, Mukhopadhya SK, Ray S (2015) Morphological alteration, lysosomal membrane fragility and apoptosis of the cells of Indian fresh water sponge exposed to washing soda (sodium carbonate). Ecotoxicol Environ Saf 122:331–342. https://doi.org/10.1016/j.ecoenv.2015.08.011

    Article  CAS  PubMed  Google Scholar 

  50. Hartley SE, Lawton JH (1992) Host-plant manipulation by gall-insects: a test of the nutrition hypothesis. J Anim Ecol. https://doi.org/10.2307/5514

    Article  Google Scholar 

  51. Weis AE, Walton R, Crego CL (1988) Reactive plant tissue sites and the population biology of gall makers. Annu Rev Entomol 33:467–486. https://doi.org/10.1146/annurev.en.33.010188.002343

    Article  Google Scholar 

  52. Motta LB, Kraus JE, Salatino A, Salatino ML (2005) Distribution of metabolites in galled and non-galled foliar tissues of Tibouchinapulchra. Biochem Syst Ecol 33(10):971–981. https://doi.org/10.1016/j.bse.2005.02.004

    Article  CAS  Google Scholar 

  53. Abrahamson WG, McCrea KD (1986) Nutrient and biomass allocation in Solidagoaltissima: effects of two stem gall makers, fertilization, and ramet isolation. Oecologia 68:174–180

    Article  Google Scholar 

  54. Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24. https://doi.org/10.1146/annurev-genet-102209-163500

    Article  CAS  PubMed  Google Scholar 

  55. Kunkler N, Brandl R, Brandle M (2013) Changes in Clonal poplar leaf chemistry caused by stem galls Alter Herbivory and leaf litter decomposition. PLoS ONE 8(11):79994. https://doi.org/10.1371/journal.pone.0079994

    Article  CAS  Google Scholar 

  56. Dsouza MR, Ravishankar BE (2014) Nutritional sink formation in galls of Ficus glomerata Roxb. (Moraceae) by the insect Pauropsylladepressa (Psyllidae, Hemiptera). Tropical Ecol. 55(1):129–136

    Google Scholar 

  57. Carneiro RGS, Castro AC, Isaias RMS (2014) Unique histochemical gradients in a photosynthesis-deficient plant gall. S Afr J Bot 92:97–104. https://doi.org/10.1016/j.sajb.2014.02.011

    Article  CAS  Google Scholar 

  58. Moura MZD, Soare GLG, dos Santos Isaias RM (2008) Species-specific changes in tissue morphogenesis induced by two arthropod leaf gallers in Lantana camara L.(Verbenaceae). Australian J Botany. 56(2):153–160. https://doi.org/10.1071/BT07131

    Article  Google Scholar 

  59. Hartley SE (1998) The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former? Oecologia 113:492–501

    Article  CAS  Google Scholar 

  60. Dicke M, Van Poecke RM (2002) Signalling in plant-insect interactions: signal transduction in direct and indirect plant defence. Plant Signal Transduct 289:316

    Google Scholar 

  61. Elzen G (1983) Cytokinins and insect galls. Comp Biochem Physiol A Physiol 76(1):17–19. https://doi.org/10.1016/0300-9629(83)90286-4

    Article  Google Scholar 

  62. Jameson PE (2000) Cytokinins and auxins in plant-pathogen interactions–An overview. Plant Growth Regul 32(2–3):369–380

    Article  CAS  Google Scholar 

  63. Zhang CX, He MX, Cao Y, Liu J, Gao F, Wang WB, Ji KP, Shao SC, Wang Y (2015) Fungus-insect gall of Phlebopusportentosus. Mycologia 107(1):12–20. https://doi.org/10.3852/13-267

    Article  PubMed  Google Scholar 

  64. Anand A, Uppalapati SR, Ryu CM, Allen SN, Kang L, Tang Y, Mysore KS (2008) Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol 146(2):703–715. https://doi.org/10.1104/pp.107.111302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Giba Z, Todorović S, Grubišić D, Konjević R (1998) Occurrence and regulatory roles of superoxide anion radical and nitric oxide in plants. IugoslavicaPhysiologica et PharmacologicaActa 34:447–461

    CAS  Google Scholar 

  66. Schmelz EA, Alborn HT, Engelbert J, Tumlinson JH (2003) Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in maize. Plant Physiol 133(1):295–306. https://doi.org/10.1104/pp.103.024174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zander M, La Camera S, Lamotte O, Métraux JP, Gatz C (2010) Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses. Plant J. 61(2):200–210. https://doi.org/10.1111/j.1365-313X.2009.04044.x

    Article  CAS  PubMed  Google Scholar 

  68. Zucker WV (1982) How aphids choose leaves: the roles of phenolics in host selection by a galling aphid. Ecology 63(4):972–981. https://doi.org/10.2307/1937237

    Article  CAS  Google Scholar 

  69. Pascual-Alvarado E, Cuevas-Reye P, Quesada M, Oyama K (2008) Interactions between galling insects and leaf-feeding insects: the role of plant phenolic compounds and their possible interference with herbivores. J Trop Ecol 24(3):329–336

    Article  Google Scholar 

  70. Anand A, Uppalapati SR, Ryu CM, Allen SN, Kang L, Tang Y, Mysore KS (2008) Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol 146(2):703–715. https://doi.org/10.1104/pp.107.111302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hool LC (2005) Reactive oxygen species in cardiac signalling–from mitochondria to plasma membrane ion channels. Proc Aust Physiol Soc 36:55–61

    Google Scholar 

  72. de Oliveira DC, Moreira ASFP, dos Santos Isaias RM (2014) Functional gradients in insect gall tissues: studies on Neotropical host plants. In: neotropical insect galls, pp 35–49

  73. Liu X, Williams CE, Nemacheck JA, Wan H, Subramanyam S, Zheng C, Chen MS (2010) Reactive oxygen species are involved in plant defense against a gall midge. Plant Physiol 152(2):985–999. https://doi.org/10.1104/pp.109.15065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Baldacci-Cresp F, Behr M, Kohler A, Badalato N, Morreel K, Goeminne G, Mol A, de Almeida Engler J, Boerjan W, El Jaziri M, Baucher M (2020) Molecular changes concomitant with vascular system development in mature galls induced by root-knot nematodes in the model tree host Populustremula× P. alba. Int J Mol Sci 21(2):406. https://doi.org/10.3390/ijms21020406

    Article  CAS  PubMed Central  Google Scholar 

  75. Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T, Shigeoka S (2002) Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J. 32(6):915–925. https://doi.org/10.1046/j.1365-313X.2002.01476.x

    Article  CAS  PubMed  Google Scholar 

  76. Eshwarappa RSB, Ramachandra YL, Subaramaihha SR, Subbaiah SGB, Austi RS, Dhananjaya BL (2015) Antioxidant activities of leaf galls extracts of Terminaliachebula (Gaertn.) Retz (Combretaceae). Acta Sci Pol Technol Aliment 14(2):97–105. https://doi.org/10.17306/J.AFS.2015.2.11

    Article  Google Scholar 

  77. Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Biol 48(1):251–275. https://doi.org/10.1146/annurev.arplant.48.1.251

    Article  CAS  Google Scholar 

  78. Das S, DeMason DA, Ehlers JD, Close T, Roberts PA (2008) Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation. J Exp Bot 59(6):1305–1313. https://doi.org/10.1093/jxb/ern036

    Article  CAS  PubMed  Google Scholar 

  79. Kombrink E, Schmelzer E (2001) The hypersensitive response and its role in local and systemic disease resistance. Eur J Plant Pathol 107(1):69–78

    Article  Google Scholar 

  80. Grün S, Lindermayr C, Sell S, Durner J (2006) Nitric oxide and gene regulation in plants. J Exp Bot 57(3):507–516. https://doi.org/10.1093/jxb/erj053

    Article  CAS  PubMed  Google Scholar 

  81. Mur LA, Prats E, Pierr S, Hall MA, Hebelstrup KH (2013) Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Front Plant Sci 4:215. https://doi.org/10.3389/fpls.2013.00215

    Article  PubMed  PubMed Central  Google Scholar 

  82. Urquiaga INES, Leighton F (2000) Plant polyphenol antioxidants and oxidative stress. Biol Res. 33(2):55–64. https://doi.org/10.7584/JKTAPPI.2018.04.50.2.5

    Article  CAS  PubMed  Google Scholar 

  83. Konno K (2011) Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. Phytochemistry 72(13):1510–1530. https://doi.org/10.1016/j.phytochem.2011.02.016

    Article  CAS  PubMed  Google Scholar 

  84. Forslund H, Wikström SA, Pavia H (2010) Higher resistance to herbivory in introduced compared to native populations of a seaweed. Oecologia 164(3):833–840. https://doi.org/10.1007/s00442-010-1767-1

    Article  PubMed  Google Scholar 

  85. Kruzmane D, Jankevic L, Ievinsh G (2002) Effect of regurgitant from Leptinotarsadecemlineata on wound responses in Solanumtuberosum and Phaseolus vulgaris. Physiologia Plantarum 115(4):577–584. https://doi.org/10.1034/j.1399-3054.2002.1150412.x

    Article  CAS  PubMed  Google Scholar 

  86. Baştaş KK (2015) Importance of reactive oxygen species in plants-pathogens interactions. Selcuk J Agric Food Sci 28(1):11–21

    Google Scholar 

  87. Samsone I, Andersone U, Ievinsh G (2012) Variable effect of arthropod-induced galls on photochemistry of photosynthesis, oxidative enzyme activity and ethylene production in tree leaf tissues. Environ Experiment Biol 10:15–26

    Google Scholar 

  88. You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092. https://doi.org/10.3389/fpls.2015.01092

    Article  PubMed  PubMed Central  Google Scholar 

  89. Krens FA, Molendijk L, Wullem GJ, Schilperoort RA (1985) The role of bacterial attachment in the transformation of cell-wall-regenerating tobacco protoplasts by Agrobacterium tumefaciens. Planta 166(3):300–308

    Article  CAS  Google Scholar 

  90. Ighodaro OM, Akinloye OA (2018) First line defense antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med 54(4):287–293. https://doi.org/10.1016/j.ajme.2017.09.001

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Head of the Department of Zoology, University of Calcutta, for providing necessary facilities and for conducting the experiments. We thankfully acknowledge Centre for Research in Nano-science and Nano-technology (CRNN) of University of Calcutta for ROS experiment facility and Toxicology Laboratory from University of Calcutta for antioxidant profiling assays. This research did not receive any specific grant or financial support from any funding agency elsewhere. There is no conflict of interest in publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amlan Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Significance Statement The paper describes data to understand how chemical adaptation is being played in gall-induced foliar tissues from three model plants. How the assemblage of different phytochemical gradients in gall-affected tissue modulates plant–herbivore survivorship and assists coevolution has been portrayed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Mukherjee, A., Gautam, A. et al. Chemical Arms Race: Occurrence of Chemical Defense and Growth Regulatory Phytochemical Gradients in Insect-Induced Foliar Galls. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 92, 415–429 (2022). https://doi.org/10.1007/s40011-021-01322-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-021-01322-2

Keywords

Navigation