Skip to main content
Log in

Mitigation of Drought Stress by Piriformospora indica in Solanum melongena L. cultivars

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

The present study was undertaken to investigate the amelioration of drought stress in Solanum melongena L. cultivars (Arka Shirish and F1 hybrid) upon Piriformospora indica application under greenhouse conditions. Two cycles of drought stress were induced to both cultivars of S. melongena L. Piriformospora indica-colonized roots performed better as compared to uninoculated plants. An increase in root length (1.5-fold), shoot length (≅ 1.5-fold) and biomass (two fold) was observed with  Piriformospora indica treated plants over untreated plants under drought stress. The percent colonization was found to be ≅ 75%, and the accumulation of proline was found to be the highest in the Piriformospora indica treated S. melongena L. plants. An increase in total chlorophyll, relative water content, guaiacol peroxidase activity and catalase activity was observed in P. indica-inoculated roots as compared to uninoculated roots. P. indica-colonized S. melongena L. plants were able to tolerate two cycles of drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  Google Scholar 

  2. Kiely PD, Haynes JM, Higgins CH, Franks A, Mark GL, Morrissey JP, O’Gara F (2006) Exploiting new systems-based strategies to elucidate plant-bacterial interactions in the rhizosphere. Microbial Ecol 51:257–266

    Article  CAS  Google Scholar 

  3. Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  Google Scholar 

  4. Azcón R, Barea JM (2010) Mycorrhizosphere interactions for legume improvement. In: Khanf MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer, Vienna, pp 237–271

    Chapter  Google Scholar 

  5. Varma A, Savita V, Sudha Sahay N, Butehorn B, Franken P (1999) Piriformospora indica, a cultivable plant–growth–promoting root endophyte. Appl Environ Microbiol 65(6):2741–2744

    Article  CAS  Google Scholar 

  6. Singh A, Sharma J, Rexer KH, Varma A (2000) Plant productivity determinants beyond minerals, water and light: Piriformospora indica—a revolutionary plant growth promoting fungus. Curr Sci 79(11):1548–1554

    Google Scholar 

  7. Johnson JM, Alex T, Oelmüller R (2014) Piriformospora indica: The versatile and multifunctional root endophytic fungus for enhanced yield and tolerance to biotic and abiotic stress in crop plants. J Trop Agric 52(2):103–122

    Google Scholar 

  8. Nomura H, Komori T, Kobori M, Nakahira Y, Shiina T (2008) Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. Plant J 53:988–998

    Article  CAS  Google Scholar 

  9. Collonnier C, Fock I, Kashyap V, Rotino G, Daunay M, Lian Y et al (2001) Applications of biotechnology in eggplant. Plant Cell Tissue Organ Cult 65:91–107

    Article  CAS  Google Scholar 

  10. Fu QS, Yang RC, Wang HS, Zhao B, Zhou CL, Ren SX et al (2013) Leaf morphological and ultrastructural performance of eggplant (Solanum melongena L.) in response to water stress. Photosynthetica 51:109

    Article  CAS  Google Scholar 

  11. Kumar M, Yadav V, Tuteja N, Johri AK (2009) Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology 155:780–790

    Article  CAS  Google Scholar 

  12. Rai M, Acharya D, Singh A, Varma A (2001) Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11:123–128

    Article  Google Scholar 

  13. Prasad R, Kamal S, Pradeep KS, Oelmüller R, Varma A (2013) Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. J Basic Microbiol 53:1016–1024

    Article  CAS  Google Scholar 

  14. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  15. Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. AJCS 4(8):580–585

    CAS  Google Scholar 

  16. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  17. Polle A, Otter T, Seifert F (1994) Apoplastic peroxidases and lignification in needles of Norway (Picea abies L.). Plant Physiol 106:53–60

    Article  CAS  Google Scholar 

  18. Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  19. Duncan DB (1955) Multiple range multiple F tests. Biometrics 11:1–42

    Article  Google Scholar 

  20. Husaini AM, Abdin MZ, Khan SY, Xu W, Aquil S, Anis M (2012) Modifying strawberry for better adaptability to adverse impact of climate change. Curr Sci 102(12):1660–1673

    CAS  Google Scholar 

  21. Jogawat A, Shreya S, Madhunita B, Vikram D, Kumar M, Meenakshi D, Varma A, Oelmüller R, Narendra T, Atul Kumar J (2013) Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal Behav 8(10):e26891–e26896

    Article  Google Scholar 

  22. Bagheri AA, Saadatmand S, Niknam V, Nejadsatari T, Babaeizad V (2013) Effect of endophytic fungus, Piriformospora indica on growth and activity of antioxidant enzymes of rice (Oryzae sativa L.) under salinity stress. Int J Adv Biol Biomed Res 11:1337–1350

    Google Scholar 

  23. Tanha SR, Ghasemnezhad A, Valiolah B (2014) A study on the effect of endophyte fungus, Piriformospora indica, on the yield and phytochemical changes of globe artichoke (Cynara scolymus L.) leaves under water stress. Int J Adv Biol Biomed Res 2(6):1907–1921

    CAS  Google Scholar 

  24. Walton E, Podivinsky E (1998) Regulation of proline biosynthesis in Kiwifruit buds with and without hydrogen cyanamide treatment. Physiol Plant 102:171–178

    Article  CAS  Google Scholar 

  25. Rathod DP, Brestic M, Shao HB (2011) Chlorophyll a fluorescence determines the drought resistance capabilities in two varieties of mycorrhized and non-mycorrhized Glycine max Linn. Afr J Microbiol Res 5(24):4197–4206

    Article  CAS  Google Scholar 

  26. Sun C, Joy MJ, Daguang C, Sherameti I, Oelmullera R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017

    Article  CAS  Google Scholar 

  27. Khalafallah AA, Abo-Ghalia HH (2008) Effect of arbuscular mycorrhizal fungi on the metabolic products and activity of antioxidant system in wheat plants subjected to short-term water stress, followed by recovery at different growth stages. J Appl Sci Res 4:559–569

    CAS  Google Scholar 

  28. Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schafer P, Schwarczinger I, Zuccaro A, Skoczowski A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510

    Article  CAS  Google Scholar 

  29. Vadassery J, Tripathi S, Prasad R, Varma A, Oelmuller R (2009) Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. J Plant Physiol 166:1263–1274

    Article  CAS  Google Scholar 

  30. Yaghoubian Y, Goltapeh EM, Pirdashti H, Esfandiari E, Feiziasl V, Dolatabadi HK, Varma A, Hassim MH (2014) Effect of Glomus mosseae and Piriformospora indica on growth and antioxidant defense responses of wheat plants under drought stress. Agric Res 3(3):239–245

    Article  CAS  Google Scholar 

  31. Xu L, Wang A, Wang J, Wei Q, Zhang W (2017) Piriformospora indica confers drought tolerance on Zea mays L. through enhancement of antioxidant activity and expression of drought-related genes. Crop J 5:251–258

    Article  Google Scholar 

  32. Zhanga W, Wanga J, Xua L, Wanga A, Huang L, Dua H, Qiuc L, Oelmüller R (2018) Drought stress responses in maize are diminished by Piriformospora indica. Plant Signal Behav 13(1):e1414121

    Article  Google Scholar 

  33. Ahmadvand G, Hajinia S (2018) Effect of endophytic fungus Piriformospora indica on yield and some physiological traits of millet (Panicum miliaceum) under water stress. Crop Pasture Sci. https://doi.org/10.1071/CP17364

    Article  Google Scholar 

  34. Ghaffari MR, Mirzaei M, Ghabooli M, Khatabi B, Wu Y, Zabet-Moghaddam M, Mohammadi-Nejad G, Haynes PA, Hajirezaei MR, Sepehri M, Salekdeh GH (2019) Root endophytic fungus Piriformospora indica improves drought stress adaptation in barley by metabolic and proteomic reprogramming. Environ Exp Bot 157:197–210

    Article  CAS  Google Scholar 

  35. Abdelaziz ME, Abdeldaym EA, Sabra MA (2018) The root endophytic fungus Piriformospora indica improves growth performance, physiological parameters and yield of tomato under water stress condition. Middle East J Agric Res 7(3):1090–1101

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Ajit Varma for providing the Piriformospora indica culture. They also thank the staff at SAIF, Kochi, for their help rendered during scanning electron microscopy analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Swetha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to publish this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Significance Statement Piriformospora indica-colonized Solanum melongena L. plants were able to tolerate two cycles of drought stress by improving water absorption and nutrient uptake, accumulation of high proline content and conferring protection against ROS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swetha, S., Padmavathi, T. Mitigation of Drought Stress by Piriformospora indica in Solanum melongena L. cultivars. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 90, 585–593 (2020). https://doi.org/10.1007/s40011-019-01128-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-019-01128-3

Keywords

Navigation