Pollination Biology and Breeding System of Maple Species Acer oblongum Wall. ex DC. (Sapindaceae) Showing Mixed Syndromes of Wind and Insect Pollination

Abstract

Acer oblongum is unique among maples because of the leaf structure and cryptic monoecy. In the present study, an in-depth investigation of reproductive biology has been carried out to study the pollination biology and breeding system of the tree species. The flowers show mixed characteristics of both entomophilous and anemophilous pollination in structure and pollen characteristics, respectively, and can thus be considered as ambophilous (exhibiting traits conducive to both insect and wind pollination). The wind was the primary means of pollination, but exclusion experiments showed that insects (Apis dorsata and syrphid fly) also facilitated pollination by 3–5%. The stigma of hermaphrodite flowers is located 2–3 cm above the level of indehiscent anthers. Interestingly, the insect pollinators hardly came in contact with the pistil; they only brought the pollen close to the stigma and shed it in its vicinity, to be trapped almost like the wind-borne pollen grains on the stigmatic papillae. Anthers of hermaphrodite flowers serve a relict function by attracting insect pollinators, but not contributing to self or cross-pollination. Fruit set following manual geitonogamous and xenogamous pollination showed a difference. The probable reason accounting for low fruit set seems to be the limited number of pollen donors (Staminate type II flowers), high pollen sterility, sparse distribution of individual trees, and geitonogamous pollen. Fruits are dry, indehiscent samaras. Mature fruits do not invariably bear seeds inside since hollow fruits are formed even when ovules inside remain unfertilized.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Moza MK, Bhatnagar AK (2007) Plant reproductive biology studies crucial for conservation. Curr Sci 92(9):1207

    Google Scholar 

  2. 2.

    Tandon R, Shivanna KR, Mohan Ram HY (2003) Reproductive biology of Butea monosperma (Fabaceae). Ann Bot 92(5):715–723

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Schemske DW, Husband BC, Ruckelshaus MH, Goodwillie C, Parker IM, Bishop JG (1994) Evaluating approaches to the conservation of rare and endangered plants. Ecology 75:584–606

    Google Scholar 

  4. 4.

    Moza MK, Bhatnagar AK (2005) Phenology and climate change. Curr Sci 89:243–244

    Google Scholar 

  5. 5.

    Morin X, Roy J, Sonie L, Chuine I (2010) Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytol 186(4):900–910

    PubMed  Google Scholar 

  6. 6.

    Carón MM, De Frenne P, Chabrerie O, Cousins SAO, De Backer L, Decocq G, Diekmann M, Heinken T, Kolb A, Naaf T, Plue J, Selvi F, Strimbeck GR, Wulf M, Verheyen K (2015) Impacts of warming and changes in precipitation frequency on the regeneration of two Acer species. Flora 214:24–33

    Google Scholar 

  7. 7.

    Kumar S, Tewari LM, Tewari A (2011) Phenological studies of two tree species Ilex dipyrena and Acer oblongum in Nainital Catchment, Kumaun Himalaya. Int J Sci Technol Manag 2(2):125–128

    Google Scholar 

  8. 8.

    Saeki I (2008) Sexual reproductive biology of the endangered Japanese red maple (Acer pycnanthum). Ecol Res 23:719–727

    Google Scholar 

  9. 9.

    Sullivan JR (1983) Comparative reproductive biology of Acer pensylvanicum and Acer spicatum (Aceraceae). Am J Bot 70(6):916–924

    Google Scholar 

  10. 10.

    Sakai AK (1990) Sexual reproduction of red maple (Acer rubrum) in northern lower Michigan. Am Midl Nat 123(2):309–318

    Google Scholar 

  11. 11.

    de Jong PC (1976) Flowering and sex expression in Acer L. A biosystematic study. Mededelingen Landbouwhogeschool, Wageningen

    Google Scholar 

  12. 12.

    Khushalani I (1963) Floral morphology and embryology of Acer oblongum. Phyton 10:275–284

    Google Scholar 

  13. 13.

    Sato T (2002) Phenology of sex expression and gender variation in a heterodichogamous maple, Acer japonicum. Ecology 83(5):1226–1238

    Google Scholar 

  14. 14.

    Peck CJ, Lersten NR (1991) Papillate stigmas in Acer (Aceraceae). Bull Torrey Bot Club 118(1):20–23

    Google Scholar 

  15. 15.

    Jacobs CA, Lersten NR (1994) Microsporogenesis and endothecial wall patterns in black maple (Acer saccharum subsp. nigrum, Aceraceae). Bull Torrey Bot Club 121(2):180–187

    Google Scholar 

  16. 16.

    Nayar MP, Shastry ARK (1987) Red data book of Indian plants. BSI, Calcutta

    Google Scholar 

  17. 17.

    Walter KS, Gillett HJ (1998) IUCN Red List of Threatened Plants. Compiled by the World Conservation Monitoring Centre. IUCN: The World Conservation Union, Gland, Switzerland, Cambridge

  18. 18.

    Nayar MP, Datta A (1982) Fascicles of flora of India, fascicle 9 Aceraceae. Botanical Survey of India, Calcutta

    Google Scholar 

  19. 19.

    Yadav N, Pandey AK, Bhatnagar AK (2016) Cryptic monoecy and floral morph types in Acer oblongum (Sapindaceae): an endangered taxon. Flora 224:183–190

    Google Scholar 

  20. 20.

    Kearns CA, Inouye DW (1993) Techniques for pollination biologists. University Press of Colorado, Niwot

    Google Scholar 

  21. 21.

    Heslop-Harrison J, Heslop-Harrison Y (1970) Evaluation of pollen viability by enzymatically induced Fluorescence: intracellular hydrolysis of Fluorescein diacetate. Stain Technol 45:115

    CAS  PubMed  Google Scholar 

  22. 22.

    Dafni A (1992) Pollination ecology: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  23. 23.

    Wragg PD, Johnson SD (2011) Transition from wind pollination to insect pollination in sedges: experimental evidence and functional traits. New Phytol 191:1128–1140

    PubMed  Google Scholar 

  24. 24.

    Peeters L, Totland O (1999) Wind to insect pollination ratios and floral traits in five alpine Salix species. Can J Bot 77(4):556–563

    Google Scholar 

  25. 25.

    Dafni A, Calder DM (1987) Pollination by deceit and floral mimesis in Thelymitran antennifera (Orchidaceae). Plant Syst Evol 158:11–22

    Google Scholar 

  26. 26.

    Linskens HF, Esser K (1957) Über eine specifische Anfärbung der Pollenschläuche im Griffel und die Zahl der Kallosepfropfen nach selbstung und fremdung. Naturweiss 44:16

    Google Scholar 

  27. 27.

    Zapata TR, Arroyo MTK (1978) Plant reproductive ecology of a secondary deciduous tropical forest in Venezuela. Biotropica 10(3):221–230

    Google Scholar 

  28. 28.

    IBM®, SPSS®, Amos™ 22. IBM Corp released 2013. Statistical Package for Social Sciences v. 22.0 IBM Corp., New York

  29. 29.

    Bawa KS (1977) The reproductive biology of Cupania guatemalensis Radlk. (Sapindaceae). Evolution 31(1):52–63

    CAS  PubMed  Google Scholar 

  30. 30.

    Abu-Asab MS, Peterson PM, Shetler SG, Orli SS (2001) Earlier plant flowering in spring as a response to global warming in the Washington, DC, area. Biodivers Conserv 10:597–612

    Google Scholar 

  31. 31.

    Mohandass D, Zhao J-L, Xia Y-M, Campbell MJ, Li Q-J (2015) Increasing temperature causes flowering onset time changes of alpine ginger Roscoea in the central Himalayas. J Asia Pac Biodivers 8:191–198

    Google Scholar 

  32. 32.

    Thakur P, Bhatnagar AK (2013) Pollination constraints in flowering plants—human actions undoing over hundred million years of co-evolution and posing an unprecedented threat to biodiversity. Int J Plant Reprod Biol 5(1):29–74

    Google Scholar 

  33. 33.

    Friedman J, Barrett SCH (2009) Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann Bot 103:1515–1527

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Linder HP (1998) Morphology and the evolution of wind pollination. In: Owens SJ, Rudall PJ (eds) Reproductive biology in systematics, conservation and economic botany. Royal Botanic Gardens, Kew, pp 123–135

    Google Scholar 

  35. 35.

    Ackerman JD (2000) Abiotic pollen and pollination: ecological, functional and evolutionary perspectives. Plant Syst Evol 222:167–185

    Google Scholar 

  36. 36.

    Culley M, Weller SG, Sakai AK (2002) The evolution of wind pollination in angiosperms. Trends Ecol Evol 17(8):361–369

    Google Scholar 

  37. 37.

    Friedman J, Barrett SCH (2008) A phylogenetic analysis of the evolution of wind pollination in the angiosperms. Int J Plant Sci 169:49–58

    Google Scholar 

  38. 38.

    Hesse M (1979) Ultrastruktur und Verteilung des Pollenkitts in der insekten- und windblu¨tigen Gattung Acer (Aceraceae). Plant Syst Evol 131:277–289

    Google Scholar 

  39. 39.

    Hall BA (1967) Flower structure and breeding systems in the maples. Gard J New York Bot Gard 17:84–89

    Google Scholar 

  40. 40.

    Hall BA (1951) The floral anatomy of the genus Acer. Am J Bot 38:793–799

    Google Scholar 

  41. 41.

    Freeman DC, McArthur ED, Harper KT, Blauer AC (1981) Influence of environment on the floral sex ratio of monoecious plants. Evolution 35:194–197

    PubMed  Google Scholar 

  42. 42.

    Tamura S, Kudo G (2000) Wind pollination and insect pollination of two temperate willow species, Salix miyabeana and Salix sachalinensis. Plant Ecol 147:185–192

    Google Scholar 

  43. 43.

    Sacchi CF, Price PW (1988) Pollination of arroyo willow, Salix lasiolepis: role of insects and wind. Am J Bot 75:1387–1393

    Google Scholar 

  44. 44.

    Mangla Y, Tandon R (2011) Insects facilitate wind pollination in pollen-limited Crateva adansonii (Capparaceae). Aust J Bot 59:61–69

    Google Scholar 

  45. 45.

    Cruden RW (1977) Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31(1):32–46

    PubMed  Google Scholar 

  46. 46.

    Levin DA (1981) Dispersal versus gene flow in plants. Ann Mo Bot Gard 68:233–253

    Google Scholar 

  47. 47.

    Gleiser G, Verdú M (2005) Repeated evolution of dioecy from androdioecy in Acer. New Phytol 165(2):633–640

    PubMed  Google Scholar 

  48. 48.

    Renner SS, Beenken L, Grimm GW, Kocyan A, Ricklefs RE (2007) The evolution of dioecy, heterodichogamy, and labile sex expression in Acer. Evolution 61:2701–2719

    CAS  PubMed  Google Scholar 

  49. 49.

    Ross MD (1982) Five evolutionary pathways to subdioecy. Am Nat 119:297–318

    Google Scholar 

Download references

Acknowledgements

The research was supported by the Ministry of Environment, Forest and Climate Change, New Delhi, as part of “All India Coordinated Research Project on Reproductive Biology of RET Tree Species” (No. 22/2/2010-RE) sanctioned to AK Bhatnagar, and by the Research and Development Grant from the University of Delhi to AK Pandey. Thanks are also due to Shri S.K. Dass for help in the preparation of photographic plates.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arun K. Pandey.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest to publish this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Significance Statement

Acer oblongum is a threatened Himalayan tree species that is valued for its timber. The species is vanishing from its natural habitats due to anthropogenic activities and also due to a low regeneration rate. To know the reasons for poor regeneration in nature, it is important to study the reproductive biology of the species. This type of study is a prerequisite in developing a species-specific conservation programme.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yadav, N., Pandey, A.K. & Bhatnagar, A.K. Pollination Biology and Breeding System of Maple Species Acer oblongum Wall. ex DC. (Sapindaceae) Showing Mixed Syndromes of Wind and Insect Pollination. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 90, 489–500 (2020). https://doi.org/10.1007/s40011-019-01120-x

Download citation

Keywords

  • Acer oblongum
  • Cryptic monoecy
  • Ambophilous
  • Geitonogamy
  • Pollen sterility
  • Stigmatic papillae
  • Xenogamy