UPLC–MS and Dereplication-Based Identification of Metabolites in Antifungal Extracts of Fungal Endophytes

Abstract

Microbial biopesticides offer an eco-friendly alternative to synthetic chemical pesticides. Bioassay-guided fractionation of ethyl acetate concentrate of two fungal endophytes Setosphaeria rostrata (NCBI accession no. KR017047) and Acremonium sp. (NCBI accession no. KT428769) isolated from medicinal plants Chlorophytum borivilianum and Mentha piperita, respectively, was done in this study. These two isolates exhibited strong antifungal activities (IC50 value < 1 mg/ml) towards economically relevant phytopathogens, i.e. Sclerotinia sclerotiorum, Fusarium oxysporum, Botrytis cinerea and Rhizoctonia solani. Ethyl acetate extracts were subjected to MPLC to obtain fractions for metabolite identification. Bioactive components in the fractions were exhaustively characterised by aggressive dereplication based on accurate mass in UPLC–MS using online METLIN database. Systematically demarcated chromatographic and hyphenated spectroscopic techniques led to the identification of the well-described antifungal metabolite sulphamethazine (sulphonamide derivative). The study highlights the significance of dereplication procedure for probable identification of bioactive metabolites.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Arnold AE, Maynard Z, Gilbert G, Coley P, Kursar T (2003) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  2. 2.

    Smith CS, Chand T, Harris RF, Andrews JH (1989) Colonization of a submersed aquatic plant, eurasian water milfoil (Myriophyllum spicatum), by fungi under controlled conditions. Appl Environ Microbiol 55(9):2326–2332

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Raviraja NS, Sridhar KR, Barlocher F (1996) Endophytic aquatic hyphomycetes of roots of plantation crops and ferns from India. Sydowia 48(1):152–160

    Google Scholar 

  4. 4.

    Hata K, Sone K (2008) Isolation of endophytes from leaves of Neolitsea sericea in broadleaf and conifer stands. Mycoscience 49(4):229–232

    Article  Google Scholar 

  5. 5.

    Pirttilä AM, Pospiech H, Laukkanen H, Myllylä R, Hohtola A (2003) Two endophytic fungi in different tissues of Scots pine buds (Pinus sylvestris L.). Microb Ecol 45(1):53–62

    Article  Google Scholar 

  6. 6.

    Ernst M, Mendgen KW, Wirsel SGR (2003) Endophytic fungal mutualists: seed-borne Stagonospora spp. enhance reed biomass production in axenic microcosms. Mol Plant Microbe Interact 16(7):580–587

    CAS  Article  Google Scholar 

  7. 7.

    Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330

    CAS  Article  Google Scholar 

  8. 8.

    Kusari S, Lamshoft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71(2):159–162

    CAS  Article  Google Scholar 

  9. 9.

    Stierle A, Strobel G, Stierle D (1993) Taxol and Taxane production by Taxomyces andreanae, an endophytic fungus of Pacific Yew. Science 260(5105):214–216

    CAS  Article  Google Scholar 

  10. 10.

    Shu S, Zhao X, Wang W, Zhang G, Cosoveanu A, Ahn Y et al (2014) Identification of a novel endophytic fungus from Huperzia serrata which produces huperzine A. World J Microbiol Biotechnol 30(12):3101–3109

    CAS  Article  Google Scholar 

  11. 11.

    White JF, Torres MS, Johnson H, Irizarry I, Tadych M (2014) A functional view of plant microbiomes: endosymbiotic systems that enhance plant growth and survival. In: Verma V, Gange A (eds) Advances in endophytic research. Springer, New Delhi

    Google Scholar 

  12. 12.

    Schulz B, Boyle C (1998) The endophytic continuum. Mycol Res 109(6):661–686

    Article  Google Scholar 

  13. 13.

    Chowdhary K, Kaushik N (2017) Biodiversity and in vitro inhibition study of fungal endophytes of chlorophytum borivilianum against selected phytopathogens. PNAS India Sect B Biol Sci. https://doi.org/10.1007/s40011-017-0924-2

    Article  Google Scholar 

  14. 14.

    Chowdhary K, Kaushik N (2018) Biodiversity study and potential of fungal endophytes of peppermint and effect of their extract on chickpea rot pathogens. Arch Phytopathol Plant Protect 51(3–4):139–155

    Article  Google Scholar 

  15. 15.

    Nielsen KF, Larsen TO (2015) The importance of mass spectrometric dereplication in fungal secondary metabolite analysis. Front Microbiol 6:71

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Kildgaard S, Mansson M, Dosen I, Klitgaard A, Frisvad JC, Larsen TO, Nielsen KF (2014) Accurate dereplication of bioactive secondary metabolites from marine-derived fungi by UHPLC-DAD-QTOFMS and a MS/HRMS library. Marine Drugs 12(6):3681–3705

    Article  Google Scholar 

  17. 17.

    Kumar S, Kaushik N, Proksch P (2013) Identification of antifungal principle in the solvent extract of an endophytic fungus Chaetomium globosum from Withania somnifera. SpringerPlus 2(1):37

    Article  Google Scholar 

  18. 18.

    Sarang H, Rajani P, Vasanthakumari MM, Kumara PM, Siva R, Ravikanth G, Shaanker RU (2017) An endophytic fungus, Gibberella moniliformis from Lawsonia inermis L. produces lawsone, an orange-red pigment. Antonie Van Leeuwenhoek 110(7):853–862

    CAS  Article  Google Scholar 

  19. 19.

    Tan GT, Pezzuto JM, Kinghorn AD, Hughes SH (1991) Evaluation of natural products as inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. J Nat Prod 54(1):143–154

    CAS  Article  Google Scholar 

  20. 20.

    Chohan ZH, Shaikh AU, Rauf A, Supuran CT (2006) Antibacterial, antifungal and cytotoxic properties of novel N-substituted sulfonamides from 4-hydroxycoumarin. J Enz Inhibit Med Chem 21(6):741–748

    CAS  Article  Google Scholar 

Download references

Acknowledgements

One of the authors humbly acknowledges the financial grant (JRF and SRF) of CSIR No. 09/550 (0037) 2009-EMR-1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kanika Chowdhary.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to publish this manuscript.

Additional information

Significance Statement

Bioactive components in the MPLC fractions of fungal endophytes Setosphaeria rostrata and Acremonium sp. were exhaustively characterised by aggressive dereplication based on accurate mass in UPLC–MS using online METLIN database. This technique led to the identification of antifungal metabolite sulphamethazine.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 40 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chowdhary, K., Kaushik, N. UPLC–MS and Dereplication-Based Identification of Metabolites in Antifungal Extracts of Fungal Endophytes. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 89, 1379–1387 (2019). https://doi.org/10.1007/s40011-018-1060-3

Download citation

Keywords

  • Endophytic fungi
  • UPLC/MS
  • Antifungal activity
  • METLIN database
  • Dereplication