Skip to main content

Advertisement

Log in

Enhanced Adult Neural Stem Cell Population Following Bacterial Infection during Early Postnatal Life

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Impaired adult hippocampal neurogenesis is a prominent feature of neurodegenerative disorders. The extent of neural stem cell (NSCs) generation in adult brain is highly adaptive and depends on both inflammatory signalling and glial cells. In this study, through immunohistochemical co-labelling of nestin and glial fibrillary acidic protein (GFAP), the authors have demonstrated an enhanced stem astrocyte density in subgranular zone of adult and ageing rats following neonatal lipopolysaccharide (LPS) exposure, which could be attributed as a regenerative attempt evoked to overcome the effects of bacterial infection. However, a second hit of LPS at 12 months of age might have killed the progenitors because of the persistent glial activation leading to a decline in stem astrocyte population. The enhanced density of NSCs is attributed to the activation of the toll-like receptor-4 (TLR-4) by LPS on their surface that in turn influences their proliferative potential. The information generated may be useful for therapeutically modulating the pathway in a way so that the TLR-4 activation following bacterial infection may be checked at a level when it triggers the activation of the innate immune response. Thus, the enhanced number of NSCs can generate a viable number of neurons that will mature and integrate in the hippocampal circuitry to compensate the loss due to bacterial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335

    Article  CAS  PubMed  Google Scholar 

  2. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  CAS  PubMed  Google Scholar 

  3. Limke TL, Rao MS (2002) Neural stem cells in aging and disease. J Cell Mol Med 6:475–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Bostrom E, Westerlund I, Vial C, Buchholz BA, Possnert G (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ernst A, Frisen J (2015) Adult neurogenesis in humans—common and unique traits in mammals. PLoS Biol 13:e1002045. https://doi.org/10.1371/journal.pbio.1002045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kempermann G, Song H, Gage FH (2015) Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol 7:a018812. https://doi.org/10.1101/cshperspect.a018812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    Article  CAS  PubMed  Google Scholar 

  8. Akers KG, Martinez-Canabal A, Restivo L, Yiu AP, De Cristofaro A, Hsiang HL, Wheeler AL, Guskjolen A, Niibori Y, Shoji H, Ohira K (2014) Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344:598–602

    Article  CAS  PubMed  Google Scholar 

  9. Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MV (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 7:1233

    Article  CAS  PubMed  Google Scholar 

  10. Gonzalez-Perez O, Quinones-Hinojosa A (2012) Role of astrocytes as neural stem cells in adult brain. J Stem Cells 7:181–188

    PubMed  PubMed Central  Google Scholar 

  11. Ihrie RA, Alvarez-Buylla A (2008) Cells in the astroglial lineage are neural stem cells. Cell Tissue Res 331:179–191

    Article  PubMed  Google Scholar 

  12. Gonzalez-Perez O, Quinones-Hinojosa A (2010) A dose-dependent effect of EGF on migration and differentiation of adult subventricular zone astrocytes. Glia 58:975–983

    PubMed  PubMed Central  Google Scholar 

  13. Balu DT, Lucki I (2009) Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neurosci Biobehav Rev 33:232–252

    Article  PubMed  Google Scholar 

  14. Mu Y, Lee SW, Gage FH (2010) Signalling in adult neurogenesis. Curr Opin Neurobiol 20:416–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu H, Song N (2016) Molecular mechanism of adult neurogenesis and its association with human brain diseases. J Cent Nerv Syst Dis 8:5–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765

    Article  CAS  PubMed  Google Scholar 

  17. Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158:1021–1029

    Article  CAS  PubMed  Google Scholar 

  18. Fujioka H, Akema T (2010) Lipopolysaccharide acutely inhibits proliferation of neural precursor cells in the dentate gyrus in adult rats. Brain Res 1352:35–42

    Article  CAS  PubMed  Google Scholar 

  19. Gerber J, Bottcher T, Bering J, Bunkowski S, Brück W, Kuhnt U, Nau R (2003) Increased neurogenesis after experimental Streptococcus pneumoniae meningitis. J Neurosci Res 73:441–446

    Article  CAS  PubMed  Google Scholar 

  20. Veena J, Rao BS, Srikumar BN (2011) Regulation of adult neurogenesis in the hippocampus by stress, acetylcholine and dopamine. J Nat Sci Biol Med 2:26–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Connor JR (2013) Metals and oxidative damage in neurological disorders. Springer, New York

    Google Scholar 

  22. Musaelyan K, Egeland M, Fernandes C, Pariante CM, Zunszain PA, Thuret S (2014) Modulation of adult hippocampal neurogenesis by early-life environmental challenges triggering immune activation. Neural Plast 2014:194396. https://doi.org/10.1155/2014/194396

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cameron HA, Glover LR (2015) Adult neurogenesis: beyond learning and memory. Annu Rev Psychol 66:53–81

    Article  PubMed  Google Scholar 

  24. Cui K, Ashdown H, Luhesh GN, Boksa P (2009) Effects of prenatal immune activation on hippocampal neurogenesis in the rat. Schizophr Res 113(2–3):288–297

    Article  PubMed  Google Scholar 

  25. Meyer U, Nyffeler M, Engler A, Urwlyer A, Schedlowski M, Knuesel I, Yee BK, Feldon J (2006) The time of prenatal immune challenge determines the specificity of inflammation mediated brain and behavioral pathology. J Neurosci 26:4752–4762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meyer U, Nyffeler M, Yee BK, Knuesel I, Feldon J (2008) Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late foetal development in mice. Brain Behav Immun 22:469–486

    Article  CAS  PubMed  Google Scholar 

  27. Mouihate A (2016) Prenatal activation of toll-like receptor-4 dampens adult hippocampal neurogenesis in an IL-6 dependent manner. Front cell Neurosci 10:173. https://doi.org/10.3389/fncel.2016.00173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Henry CJ, Huang Y, Wynne AM, Godbout JP (2009) Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1β and anti-inflammatory IL-10 cytokines. Brain Behav Immun 23(3):309–317

    Article  CAS  PubMed  Google Scholar 

  29. Sharma A, Patro N, Patro IK (2016) Lipopolysaccharide-Induced apoptosis of astrocytes: therapeutic intervention by minocycline. Cell Mol Neurobiol 36:577–592

    Article  CAS  PubMed  Google Scholar 

  30. Clark L, Chamberlain SR, Sahakian BJ (2009) Neurocognitive mechanisms in depression: implications for treatment. Annu Rev Neurosci 32:57–74

    Article  CAS  PubMed  Google Scholar 

  31. Covacu R, Brundin L (2016) Endogenous spinal cord stem cells in multiple sclerosis and its animal model. J Neuroimmunol pii:S0165–5728(16)30403–9. https://doi.org/10.1016/j.jneuroim.2016.11.006

    Article  CAS  Google Scholar 

  32. Michalczyk K, Ziman M (2005) Nestin structure and predicted function in cellular cytoskeletal organisation. Histol Histopathol 20:665–671

    CAS  PubMed  Google Scholar 

  33. O’callaghan JP (1991) Assessment of neurotoxicity: use of glial fibrillary acidic protein as a biomarker. Biomed Environ Sci 4:197–206

    PubMed  Google Scholar 

  34. Raponi E, Agenes F, Delphin C, Assard N, Baudier J, Legraverend C, Deloulme JC (2007) S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage. Glia 55:165

    Article  PubMed  PubMed Central  Google Scholar 

  35. Steiner B, Klempin F, Wang L, Kott M, Kettenmann H, Kempermann G (2006) Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia 54:805–814

    Article  PubMed  Google Scholar 

  36. Patro N, Naik AA, Patro I (2015) Differential temporal expression of S100β in developing rat brain. Front Cell Neurosci 9:87. https://doi.org/10.3389/fncel.2015.00087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Horgusluoglu E, Nudelman K, Nho K, Saykin AJ (2017) Adult neurogenesis and neurodegenerative diseases: a systems biology perspective. Am J Med Genet B Neuropsychiatr Genet 174(1):93–112

    Article  CAS  PubMed  Google Scholar 

  38. van den Berge SA, van Strien ME, Korecka JA, Dijkstra AA, Sluijs JA, Kooijman L, Eggers R, De Filippis L, Vescovi AL, Verhaagen J, van de Berg WD (2011) The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain. Brain 134(11):3249–3263

    Article  PubMed  Google Scholar 

  39. Winner B, Winkler J (2015) Adult neurogenesis in neurodegenerative diseases. Cold Spring Harb Perspect Biol 7:a021287. https://doi.org/10.1101/cshperspect.a021287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Z, Martin LJ (2006) The adult neural stem and progenitor cell niche is altered in amyotrophic lateral sclerosis mouse brain. J Comp Neurol 497:468–488

    Article  PubMed  Google Scholar 

  41. Chi L, Ke Y, Luo C, Li B, Gozal D, Kalyanaraman B, Liu R (2006) Motor neuron degeneration promotes neural progenitor cell proliferation, migration and neurogenesis in the spinal cords of amyotrophic lateral sclerosis mice. Stem Cells 24(1):34–43

    Article  PubMed  Google Scholar 

  42. Galan L, Gomez-Pinedo U, Vela-Souto A, Guerrero-Sola A, Barcia JA, Gutierrez AR, Martinez-Martinez A, Jiménez MS, García-Verdugo JM, Matias-Guiu J (2011) Subventricular zone in motor neuron disease with frontotemporal dementia. Neurosci Lett 499:9–13

    Article  CAS  PubMed  Google Scholar 

  43. Goodell MA, Rando TA (2015) Stem cells and healthy aging. Science 350:1199–1204

    Article  CAS  PubMed  Google Scholar 

  44. Artandi SE, Blau HM, de Haan G (2015) Stem cells and aging: what next. Stem Cell 16:578–581

    CAS  Google Scholar 

  45. Naninck EF, Hoeijmakers L, Kakava-Georgiadou N, Meesters A, Lazic SE, Lucassen PJ, Korosi A (2015) Chronic early life stress alters developmental and adult neurogenesis and impairs cognitive function in mice. Hippocampus 25:309–328

    Article  CAS  PubMed  Google Scholar 

  46. Naik AA, Patro N, Seth P, Patro IK (2017) Intra-generational protein malnutrition impairs temporal astrogenesis in rat brain. Biol Open 6:931–942. https://doi.org/10.1242/bio.23432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim JJ, Song EY, Kosten TA (2006) Stress effects in the hippocampus: synaptic plasticity and the memory. Stress 9:1–11

    Article  CAS  PubMed  Google Scholar 

  48. Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci USA 98(8):4710–4715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhu DY, Liu SH, Sun HS, Lu YM (2003) Expression of inducible nitric oxide synthase after focal cerebral ischemia stimulates neurogenesis in the adult rodent dentate gyrus. J Neurosci 23:223–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bernabeu R, Sharp FR (2000) NMDA and AMPA/kainate glutamate receptors modulate dentate neurogenesis and CA3 synapsin-1 in normal and ischemic hippocampus. J Cereb Blood Flow Metab 20:1669

    Article  CAS  PubMed  Google Scholar 

  51. Zhang R, Zhang L, Zhang Z, Wang Y, Lu M, LaPointe M, Chopp M (2001) A nitric oxide donor induces neurogenesis and reduces functional deficits after stroke in rats. Ann Neurol 50:602–611

    Article  CAS  PubMed  Google Scholar 

  52. Bhattacharyya BJ, Banisadr G, Jung H, Ren D, Cronshaw DG, Zou Y, Miller RJ (2008) The chemokine stromal cell-derived factor-1 regulates GABAergic inputs to neural progenitors in the postnatal dentate gyrus. J Neurosci 28:6720–6730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carpentier PA, Palmer TD (2009) Immune influence on adult neural stem cell regulation and function. Neuron 64(1):72–92

    Article  CAS  Google Scholar 

  54. Ye Y, Xu H, Zhang X, Li Z, Jia Y, He X, Huang JH (2014) Association between toll-like receptor 4 expression and neural stem cell proliferation in the hippocampus following traumatic brain injury in mice. Int J Mol Sci 15(7):12651–12664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Indian Council of Medical Research, Govt. of India, for financial assistance through a project grant (54/36/CFP/GER/2011-NCD-II). Facilities developed through the DBT-Human Resource Development and Bioinformatics Infrastructural facilities from Department of Biotechnology used in this study are also thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisha Patro.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to publish this manuscript.

Additional information

Significant Statement

The enhanced NSCs population following bacterial infection would generate viable number of neurons that will integrate in hippocampal circuitry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patro, N., Sinha, S., Singh, K. et al. Enhanced Adult Neural Stem Cell Population Following Bacterial Infection during Early Postnatal Life. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 89, 1101–1108 (2019). https://doi.org/10.1007/s40011-018-1028-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-018-1028-3

Keywords

Navigation