Skip to main content
Log in

Preparation and Optimization of Chitosan/pDNA Nanoparticles Using Electrospray

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Chitosan (CS), as a natural polymer, has received a great deal of attention as a carrier for delivery of biomaterials. Biomaterials can be incorporated directly into chitosan nanoparticles using the electrospray method; a cost-effective method with mild condition, suitable for sensitive therapeutic agents. In the present work, the authors prepared chitosan/pDNA nanoparticles by electrospray, and evaluated the influence of process/formulation parameters such as chitosan molecular weight, N/P ratio (moles of CS amino groups to phosphate groups of DNAs) and applied voltage on the size of chitosan/pDNA nanoparticles. Furthermore, these nanoparticles were optimized by artificial neural networks for prediction of particle size. Increase in applied voltage and N/P ratio with a decrease in molecular weight led to the formation of smaller particles. Eventually, chitosan/pDNA nanoparticles with minimum size of 152 (nm) were obtained with molecular weight, N/P ratio and applied voltage values of 7 (kDa), 9, and 15 (kV), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baharifar H, Amani A (2017) Size, loading efficiency, and cytotoxicity of albumin-loaded chitosan nanoparticles: an artificial neural networks study. J Pharm Sci 106(1):411–417

    Article  CAS  Google Scholar 

  2. Esmaeilzadeh-Gharehdaghi E, Amani A, Khoshayand MR, Banan M, Faramarzi MA (2014) Chitosan nanoparticles for siRNA delivery: optimization of processing/formulation parameters. Nucl Acid Ther 24(6):420–427

    Article  CAS  Google Scholar 

  3. Abyadeh M, Zarchi AAK, Faramarzi MA, Amani A (2017) Evaluation of factors affecting size and size distribution of chitosan-electrosprayed nanoparticles. Avicenna J Med Biotechnol 9(3):126

    PubMed  PubMed Central  Google Scholar 

  4. Arya N, Chakraborty S, Dube N, Katti DS (2009) Electrospraying: a facile technique for synthesis of chitosan-based micro/nanospheres for drug delivery applications. J Biomed Mater Res B Appl Biomater 88(1):17–31

    Article  Google Scholar 

  5. Zhang S, Kawakami K (2010) One-step preparation of chitosan solid nanoparticles by electrospray deposition. Int J Pharm 397(1):211–217

    Article  CAS  Google Scholar 

  6. Beidokhti HRN, Ghaffarzadegan R, Mirzakhanlouei S, Ghazizadeh L, Dorkoosh FA (2017) Preparation, characterization, and optimization of folic acid-chitosan-methotrexate core–shell nanoparticles by box-behnken design for tumor-targeted drug delivery. AAPS PharmSciTech 18(1):115–129

    Article  Google Scholar 

  7. Lee Y-H, Mei F, Bai M-Y, Zhao S, Chen D-R (2010) Release profile characteristics of biodegradable-polymer-coated drug particles fabricated by dual-capillary electrospray. J Controll Release 145(1):58–65

    Article  CAS  Google Scholar 

  8. Enayati M, Chang M-W, Bragman F, Edirisinghe M, Stride E (2011) Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications. Colloids Surf A 382(1):154–164

    Article  CAS  Google Scholar 

  9. Pareek V, Brungs M, Adesina A, Sharma R (2002) Artificial neural network modeling of a multiphase photodegradation system. J Photochem Photobiol A 149(1):139–146

    Article  CAS  Google Scholar 

  10. Mansour-Ghaffari M, Mostafa K (2011) Comparison of response surface methodology and artificial neural network in predicting the microwave-assisted extraction procedure to determine zinc in fish muscles. Food Nutr Sci 2:803

    Google Scholar 

  11. Adebileje T, Valizadeh A, Amani A (2017) Effect of formulation parameters on the size of PLGA nanoparticles encapsulating bovine serum albumin: a response surface methodology. J Contemp Med Sci 3(12):306

    Article  CAS  Google Scholar 

  12. Zauner W, Farrow NA, Haines AM (2001) In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release 71(1):39–51

    Article  CAS  Google Scholar 

  13. Songsurang K, Praphairaksit N, Siraleartmukul K, Muangsin N (2011) Electrospray fabrication of doxorubicin-chitosan-tripolyphosphate nanoparticles for delivery of doxorubicin. Arch Pharmacal Res 34(4):583–592

    Article  CAS  Google Scholar 

  14. Abyadeh M, Sadroddiny E, Ebrahimi A, Esmaeili F, Landi FS, Amani A (2017) Electrosprayed chitosan nanoparticles: facile and efficient approach for bacterial transformation. Int Nano Lett 1:1–5

    Google Scholar 

  15. Amani A, York P, Chrystyn H, Clark BJ, Do DQ (2008) Determination of factors controlling the particle size in nanoemulsions using artificial neural networks. Eur J Pharm Sci 35(1):42–51

    Article  CAS  Google Scholar 

  16. Huh MS, Lee EJ, Koo H, Yhee JY, Oh KS, Son S, Lee S, Kim SH, Kwon IC, Kim K (2017) Polysaccharide-based nanoparticles for gene delivery. Top Curr Chem 375(2):31

    Article  Google Scholar 

  17. ISO T 80004-2 (2015) Nanotechnologies-vocabulary—part 2, nano objects, ISO/TC 229 nanotechnologies, p 10

  18. Bertrand N, Grenier P, Mahmoudi M, Lima EM, Appel EA, Dormont F, Lim J-M, Karnik R, Langer R, Farokhzad OC (2017) Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat Commun 8(1):777

    Article  Google Scholar 

  19. Hickey JW, Santos JL, Williford J-M, Mao H-Q (2015) Control of polymeric nanoparticle size to improve therapeutic delivery. J Control Release 219:536–547

    Article  CAS  Google Scholar 

  20. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36(7):887–913

    Article  CAS  Google Scholar 

  21. Sridhar R, Ramakrishna S (2013) Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter 3(3):e24281

    Article  Google Scholar 

  22. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  23. Tanford C (1961) Physical chemistry of macromolecules. Wiley, New York

    Google Scholar 

  24. Luangtana-anan M, Opanasopit P, Ngawhirunpat T, Nunthanid J, Sriamornsak P, Limmatvapirat S, Lim L (2005) Effect of chitosan salts and molecular weight on a nanoparticulate carrier for therapeutic protein. Pharm Dev Technol 10(2):189–196

    Article  CAS  Google Scholar 

  25. Shenoy SL, Bates WD, Frisch HL, Wnek GE (2005) Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer 46(10):3372–3384

    Article  CAS  Google Scholar 

  26. Gómez-Mascaraque LG, Sanchez G, López-Rubio A (2016) Impact of molecular weight on the formation of electrosprayed chitosan microcapsules as delivery vehicles for bioactive compounds. Carbohydr Polym 150:121–130

    Article  Google Scholar 

  27. Mohammadi Z, Abolhassani M, Dorkoosh F, Hosseinkhani S, Gilani K, Amini T, Najafabadi AR, Tehrani MR (2011) Preparation and evaluation of chitosan–DNA–FAP-B nanoparticles as a novel non-viral vector for gene delivery to the lung epithelial cells. Int J Pharm 409(1):307–313

    Article  CAS  Google Scholar 

  28. Hong Y, Li Y, Yin Y, Li D, Zou G (2008) Electrohydrodynamic atomization of quasi-monodisperse drug-loaded spherical/wrinkled microparticles. J Aerosol Sci 39(6):525–536

    Article  CAS  Google Scholar 

  29. Thien DVH, Hsiao SW, Ho MH (2012) Synthesis of electrosprayed chitosan nanoparticles for drug sustained release. Nano Life 2(01):1250003

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Tehran University of Medical Sciences and Health Services for providing facilities and financial support through Grant No. 93-01-87-25230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Amani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to publish this manuscript.

Ethical Approval

The authors have not conducted any studies with human participants or animals, for this article.

Additional information

Significance Statement

Electrospray is an efficient method for direct production of polymeric nanoparticles. However, the effect of various processing parameters on the formation of chitosan/pDNA has not been studied in depth. In the present study, the authors have investigated the effect of three (3) important variables on the size of chitosan/pDNA nanoparticles prepared, using electrospray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abyadeh, M., Aghajani, M., Gohari Mahmoudabad, A. et al. Preparation and Optimization of Chitosan/pDNA Nanoparticles Using Electrospray. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 89, 931–937 (2019). https://doi.org/10.1007/s40011-018-1009-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-018-1009-6

Keywords

Navigation