Skip to main content

Advertisement

Log in

Plant Growth-Promoting Potential of Endophytic Bacteria Isolated from Costus speciosus in Tropical Deciduous Forest of Eastern Himalaya

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Endophytic bacteria play an important role in plant growth. In the present investigation, the authors examined the endophytic bacteria associated with tissues (root, stem, leaf) of Costus speciosus (J. Koenig) Sm. collected from the tropical deciduous forest of Meghalaya along with their plant growth promotion traits. Scanning electron microscopy and epifluorescence microscopic studies revealed the presence of bacterial cell internal to the tissues of the plant species. A total of 122 endophytic bacteria were isolated where the extent of colonization varied in plant parts. The molecular characterization of endophytic bacteria showed that bacterial communities associated with plant species are composed of 11 genera comprising actinobacteria, firmicutes and alpha-proteobacteria. Roots unveil the highest diversity and richness of endophytic bacteria, followed by leaf and stem. On evaluating the isolates for plant growth promoting properties, it was found that eight (8) isolates can produce both; indole acetic acid and siderophore, five (5) have phosphate solubilizing activity and six (6) have ACC deaminase activity. The results confirmed that Costus speciosus in tropical deciduous forest of Meghalaya encompasses diverse endophytic bacterial communities that could be potentially useful in promoting plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bascom-Slack CA, Arnold AE, Strobel SA (2012) Student-directed discovery of the plant microbiome and its products. Science 338(6106):485–486. https://doi.org/10.1126/science.1215227

    Article  CAS  PubMed  Google Scholar 

  2. Taghavi S, Lelie DV, Hoffman A, Zhang YB, Walla MD, Vangronsveld J et al (2010) Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 6(5):e1000943. https://doi.org/10.1371/journal.pgen.1000943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thomas P, Reddy KM (2013) Microscopic elucidation of abundant endophytic bacteria colonizing the cell wall-plasma membrane peri-space in the shoot-tip tissue of banana. AoB Plants 5:plt011. https://doi.org/10.1093/aobpla/plt011

    Article  PubMed Central  Google Scholar 

  4. Compant S, Muzammil S, Lebrihi A, Mathieu F (2013) Visualization of grapevine root colonization by the Saharan soil isolate Saccharothrix algeriensis NRRL B-24137 using DOPE-FISH microscopy. Plant Soil 370:583–591. https://doi.org/10.1007/s11104-013-1648-6

    Article  CAS  Google Scholar 

  5. De Souza AO, Pamphile JA, Da Rocha CLMSC, Azevedo JL (2004) Plant-microbe interactions between maize (Zea mays L.) and endophytic microrganisms observed by scanning electron microscopy. Acta Sci Biol Sci 26(3):357–359

    Google Scholar 

  6. Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan EK (2014) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3. Biotech 4:197–204. https://doi.org/10.1007/s13205-013-0143-3

    Article  CAS  Google Scholar 

  7. Jain SK, Rao RR (1977) A handbook of field and herbarium methods. Today & Tomorrow’s Printers and Publishers, New Delhi

    Google Scholar 

  8. Barman D, Dkhar MS (2015) Amylolytic activity and its parametric optimization of an endophytic bacterium Bacillus subtilis with an ethno-medicinal origin. Biologia 70(3):283–293. https://doi.org/10.1515/biolog-2015-0047

    Article  CAS  Google Scholar 

  9. Bhattacharjee K, Banerjee S, Joshi SR (2012) Diversity of Streptomyces spp. in Eastern Himalayan region–computational RNomics approach to phylogeny. Bioinformation 8(12):548–554. https://doi.org/10.6026/97320630008548

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bhattacharjee K, Banerjee S, Bawitlung L, Krishnappa D, Joshi SR (2014) A Study on parameters optimization for degradation of endosulfan by bacterial consortia isolated from contaminated soil. Proc Natl Acad Sci India Sect B Biol Sci 84:657. https://doi.org/10.1007/s40011-013-0223-5

    Article  Google Scholar 

  11. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  12. Hata K, Futai K (1995) Endophytic fungi associated with healthy pine needles and needles infested by the pine needle gall midge, Thecodiplosis japonensis. Can J Bot 73:384–390. https://doi.org/10.1139/b95-040

    Article  Google Scholar 

  13. Gordon SA, Weber RP (1951) Colorimetric estimation of indole acetic acid. Plant Physiol 26:192–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Passari AK, Mishra VK, Gupta VK, Yadav MK, Saikia R, Singh BP (2015) In vitro and in vivo plant growth promoting activities and DNA fingerprinting of antagonistic endophytic actinomycetes associates with medicinal plants. PLoS ONE 10(9):e0139468. https://doi.org/10.1371/journal.pone.0139468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J et al (2016) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64. https://doi.org/10.1016/j.ejbt.2016.02.001

    Article  CAS  Google Scholar 

  16. Hussein KA, Joo JH (2014) Potential of siderophore production by bacteria isolated from heavy metal: polluted and rhizosphere soils. Curr Microbiol 68(6):717–723. https://doi.org/10.1007/s00284-014-0530-y

    Article  CAS  PubMed  Google Scholar 

  17. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

    Article  CAS  PubMed  Google Scholar 

  18. Thomas P, Soly TA (2009) Endophytic bacteria associated with growing shoot tips of banana (Musa sp.) cv. Grand Naine and the affinity of endophytes to the host. Microbial Ecol 58:952–964. https://doi.org/10.1007/s00248-009-9559-z

    Article  CAS  Google Scholar 

  19. Kumar A, Singh R, Yadav A, Giri DD, Singh PK, Pandey KD (2016) Isolation and characterization of bacterial endophytes of Curcuma longa L. 3. Biotech 6(1):60. https://doi.org/10.1007/s13205-016-0393-y

    Article  Google Scholar 

  20. Chandrakar S, Gupta AK (2015) Antibiotic potential of endophytic actinomycetes of medicinal herbs against human pathogenic bacteria. Proc Natl Acad Sci, India Sect B Biol Sci 87(3):905–915. https://doi.org/10.1007/s40011-015-0668-9

    Article  CAS  Google Scholar 

  21. Xia Y, DeBolt S, Dreyer J, Scott D, Williams MA (2015) Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front Plant Sci 6:490. https://doi.org/10.3389/fpls.2015.00490

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhao K, Penttinen P, Guan T, Xiao MJ, Chen Q, Xu J et al (2011) The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi plateau, China. Curr Microbiol 62(1):182–190. https://doi.org/10.1007/s00284-010-9685-3

    Article  CAS  PubMed  Google Scholar 

  23. Mengoni A, Mocali S, Surico G, Tegli S, Fani R (2003) Fluctuation of endophytic bacteria and phytoplasmosis in elm trees. Microbiol Res 158(4):363–369. https://doi.org/10.1078/0944-5013-00216

    Article  CAS  PubMed  Google Scholar 

  24. Kim TU, Cho SH, Han JH, Shin YM, Lee HB, Kim SB (2012) Diversity and physiological properties of root endophytic actinobacteria in native herbaceous plants of Korea. J Microbiol 50(1):50–57. https://doi.org/10.1007/s12275-012-1417-x

    Article  CAS  PubMed  Google Scholar 

  25. Li J, Zhao GZ, Qin S, Zhu WY, Xu LH, Li WJ (2009) Herbidospora osyris sp. nov., isolated from surface-sterilized tissue of Osyris wightiana Wall. ex Wight. Int J Syst Evol Microbiol 59(Pt 12):3123–3127. https://doi.org/10.1099/ijs.0.010579-0

    Article  CAS  PubMed  Google Scholar 

  26. Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83(1):57–62. https://doi.org/10.1016/j.chemosphere.2011.01.041

    Article  CAS  PubMed  Google Scholar 

  27. Jog R, Pandya M, Nareshkumar G, Rajkumar S (2014) Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160(Pt 4):778–788. https://doi.org/10.1099/mic.0.074146-0

    Article  CAS  PubMed  Google Scholar 

  28. Faria DC, Dias AC, Melo IS, De Carvalho Costa FE (2013) Endophytic bacteria isolated from orchid and their potential to promote plant growth. World J Microbiol Biotechnol 29(2):217–221. https://doi.org/10.1007/s11274-012-1173-4

    Article  PubMed  Google Scholar 

  29. Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169(1):83–98. https://doi.org/10.1016/j.micres.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  30. Dimkpa C, Svatos A, Merten D, Buchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54(3):163–172. https://doi.org/10.1139/w07-130

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to the State Biotech Hub (SBTHub), North-Eastern Hill University, Shillong, funded by DBT, Government of India, New Delhi for providing the required instrumentation facilities. They are also thankful to the Department of Science & Technology, Government of India, for providing financial assistance in the form of fellowship (INSPIRE Fellow). They also thank Dr. Kaushik Bhattacharjee, N.E.H.U., Shillong for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina Barman.

Ethics declarations

Conflict of interest

The authors confirm non-existence of any conflict of interest to publish this manuscript.

Additional information

Significance statement Tissue specific diversity of endophytic bacteria from Costus speciosus in tropical deciduous forest of Eastern Himalaya with plant growth promoting activity.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 525 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barman, D., Dkhar, M.S. Plant Growth-Promoting Potential of Endophytic Bacteria Isolated from Costus speciosus in Tropical Deciduous Forest of Eastern Himalaya. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 89, 841–852 (2019). https://doi.org/10.1007/s40011-018-0998-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-018-0998-5

Keywords

Navigation