Bioconversion of Olive Pomace by Submerged Cultivation of Streptomyces sp. S1M3I

  • Lamia Medouni-Haroune
  • Farid Zaidi
  • Sonia Medouni-Adrar
  • Ourdia Nouara Kernou
  • Samia Azzouz
  • Mouloud Kecha
Research Article
  • 32 Downloads

Abstract

Olive pomace is an abundant low-cost agro-industrial residue in Mediterranean countries, including Algeria. The aim of the present study was the biotreatment of olive pomace in submerged culture with Streptomyces sp. S1M3I in order to produce lignocellulolytic enzymes and to upgrade the nutritional value of olive pomace for incorporating in the livestock feed. The selected strain was cultured on submerged medium based olive pomace at 40 °C for 30 days, and subsequently, the lignocellulolytic activities, the viability of the microorganism and the chemical composition of the resulting substrate, were determined. Streptomyces sp. S1M3I exhibited activities, of 11.2 ± 0.12 U/mL for xylanase, 1.44 ± 0.02 U/mL for cellulase and 1.21 × 10−2 U/mL for laccase. A significant (p < 0.05) decrease in the hemicellulose, cellulose and lignin content was registered. Maximum of viability (2.71 × 109 cfu/mL) of Streptomyces sp. S1M3I was registered on the 7th day, followed by a decline caused by polyphenol release into the culture medium (4.37 ± 0.04%). However, the total phenolic content in dry matter (DM) during the incubation period remained significantly (p < 0.05) stable. An increase in crude protein content with 34.18% and a decrease in total lipid content with 82.23% were registered. The quantities of 98.03 ± 4.85 and 123 ± 3.6 mg/g DM have been obtained, for reducing sugar and total sugar, respectively, after 30 days of incubation. Olive pomace can be valorized by submerged culture of Actinobacteria strains; this can be an interesting alternative for biotechnological processes.

Keywords

Olive pomace Streptomyces Lignocellulolytic enzymes Bioconversion 

Notes

Acknowledgements

The research was supported by Faculty of Nature and Life Sciences, University of Bejaia-Algeria.

Compliance with Ethical Standards

Conflict of interest

There is no any actual or potential conflict of interest with other people or organizations.

References

  1. 1.
    Pagnanelli F, Viggi CC, Toro L (2010) Development of new composite biosorbents from olive pomace wastes. Appl Surf Sci 256:5492–5497. doi: 10.1016/j.apsusc.2009.12.146 CrossRefGoogle Scholar
  2. 2.
    Leite P, Manuel J, Venâncio A, Manuel J, Belo I (2016) Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation. Bioresour Technol 214:737–746. doi: 10.1016/j.biortech.2016.05.028 CrossRefPubMedGoogle Scholar
  3. 3.
    Neifar M, Jaouani A, Ayari A, Abid O, Ben H, Boudabous A, Najar T, Ellouze R (2013) Improving the nutritive value of olive cake by solid state cultivation of the medicinal mushroom Fomes fomentarius. Chemosphere 91:110–114CrossRefPubMedGoogle Scholar
  4. 4.
    Tuncer M, Ball AS, Rob A, Wilson MT (1999) Optimization of extracellular lignocellulolytic enzyme production by a thermophilic actinomycete Thermomonospora fusca BD25. Enzyme Microb Technol 25:38–47. doi: 10.1016/S0141-0229(99)00012-5 CrossRefGoogle Scholar
  5. 5.
    Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol 46:541–549. doi: 10.1016/j.enzmictec.2010.03.010 CrossRefGoogle Scholar
  6. 6.
    Prakash D, Nawani N, Prakash M, Bodas M, Mandal A, Khetmalas M, Kapadnis B (2013) Actinomycetes: a repertory of green catalysts with a potential revenue resource. Biomed Res Int 2013:1–8CrossRefGoogle Scholar
  7. 7.
    Macedo EP, Cerqueira CLO, Souza DAJ, Bispo ASR, Coelho RRR, Nascimento RP (2013) Production of cellulose-degrading enzyme on sisal and other agro-industrial residues using a new brazilian actinobacteria strain Streptomyces sp. SLBA-08. Braz J Chem Eng 30:729–735CrossRefGoogle Scholar
  8. 8.
    Thakur D, Yadav A, Gogoi BK, Bora TC (2007) Isolation and screening of Streptomyces in soil of protected forest areas from the states of Assam and Tripura, India, for antimicrobial metabolites. Sci Technol 17:242–249. doi: 10.1016/j.mycmed.2007.08.001 Google Scholar
  9. 9.
    Medouni-Haroune L, Zaidi F, Medouni-Adrar S, Roussos S, Azzouz S, Desseaux V, Kecha M (2017) Selective isolation and screening of actinobacteria strains producing lignocellulolytic enzymes using olive pomace as substrate. Iran J Biotechnol. http://ijbiotech.com/article_44227.html. Accessed 10 Mar 2017
  10. 10.
    Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340. doi: 10.1099/00207713-16-3-313 CrossRefGoogle Scholar
  11. 11.
    Locci R (1989) Streptomycetes and related genera. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, BaltimorGoogle Scholar
  12. 12.
    Gassara F, Brar SK, Tyagi RD, Verma M, Surampalli RY (2010) Screening of agro-industrial wastes to produce ligninolytic enzymes by Phanerochaete chrysosporium. Biochem Eng J 49:388–394. doi: 10.1016/j.bej.2010.01.015 CrossRefGoogle Scholar
  13. 13.
    Criquet S, Tagger S, Vogt G, Iacazio G, Le Petit J (1999) Laccase activity of forest litter. Soil Biol Biochem 31:1239–1244. doi: 10.1016/S0038-0717(99)00038-3 CrossRefGoogle Scholar
  14. 14.
    Boulekbache-Makhlouf L, Medouni L, Medouni-Adrar S, Arkoub L, Madani K (2013) Effect of solvents extraction on phenolic content and antioxidant activity of the byproduct of eggplant. Ind Crops Prod 49:668–674. doi: 10.1016/j.indcrop.2013.06.009 CrossRefGoogle Scholar
  15. 15.
    Aliakbarian B, Casazza AA, Perego P (2011) Valorization of olive oil solid waste using high pressure—high temperature reactor. Food Chem 128:704–710. doi: 10.1016/j.foodchem.2011.03.092 CrossRefGoogle Scholar
  16. 16.
    Van Soest P (1973) Collaborative study of acid-detergent fiber and lignin. J Assoc Off Anal Chem 56:781–784Google Scholar
  17. 17.
    Georges AB, Roger G (1966) Dosage global des glucides par les methodes a l’anthrone colorimétriques et a l’orcinol. Cah ORSTOM sér Pédol 4:97–103Google Scholar
  18. 18.
    Miller G (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. doi: 10.1021/ac60147a030 CrossRefGoogle Scholar
  19. 19.
    Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. doi: 10.1016/0304-3894(92)87011-4 PubMedGoogle Scholar
  20. 20.
    Graça MAS, Bärlocher F, Gessner M (2005) Methods to study litter decomposition. Springer, New York. doi: 10.1007/1-4020-3466-0 CrossRefGoogle Scholar
  21. 21.
    Paini M, Aliakbarian B, Casazza AA, Lagazzo A, Botter R, Perego P (2015) Microencapsulation of phenolic compounds from olive pomace using spray drying: a study of operative parameters. LWT Food Sci Technol 62:177–186. doi: 10.1016/j.lwt.2015.01.022 CrossRefGoogle Scholar
  22. 22.
    Lv Y, Wang C, Jia Y, Wang W, Ma X, Du J, Pu G, Tian X (2014) Effects of sulfuric, nitric, and mixed acid rain on litter decomposition, soil microbial biomass, and enzyme activities in subtropical forests of China. Chem Anal 79:1–9. doi: 10.1016/j.apsoil.2013.12.002 Google Scholar
  23. 23.
    Vance ED, Chapin FS (2001) Substrate limitations to microbial activity in taiga forest floors. Soil Biol Biochem 33:173–188CrossRefGoogle Scholar
  24. 24.
    Aparicio J, Zoleica M, Solá S, Susana C, Julia M, Alejandra M (2015) Safety versatility of Streptomyces sp. M7 to bioremediate soils co-contaminated with Cr(VI) and lindane. Ecotoxicol Environ Saf 116:34–39. doi: 10.1016/j.ecoenv.2015.02.036 CrossRefPubMedGoogle Scholar
  25. 25.
    Banks CJ, Humphreys PN (1998) The anaerobic treatment of a ligno-cellulosic substrate offering little natural pH buffering capacity. Water Sci Technol 38:29–35. doi: 10.1016/S0273-1223(98)00494-6 CrossRefGoogle Scholar
  26. 26.
    Lakhtar H (2009) Culture du Lentinula edodes (Berk.) Pegler sur résidus oléicoles en fermentation en milieu solide: Transformation des polyphénols des margines. Université Paul, Aix Marseille IIIGoogle Scholar
  27. 27.
    Ferreira SMP, Duarte AP, Queiroz JA, Domingues FC (2009) Influence of buffer systems on Trichoderma reesei Rut C-30 morphology and cellulase production. Electron J Biotechnol 12:1–9. doi: 10.2225/vol12-issue3-fulltext-6 CrossRefGoogle Scholar
  28. 28.
    Mokomele T, Callanan LH, Clarke KG (2011) Ethanol production from xylose and glucose by Zymomonas mobilis for the development of a membrane bioreactor. University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South AfricaGoogle Scholar
  29. 29.
    Adhi TP, Korus RA, Crawford DL (1989) Production of major extracellular enzymes during lignocellulose degradation by two Streptomycetes in agitated submerged culture. Appl Environ Microbiol 55:1165–1168PubMedPubMedCentralGoogle Scholar
  30. 30.
    Haddadin MSY, Haddadin J, Arabiyat OI, Hattar B (2009) Biological conversion of olive pomace into compost by using Trichoderma harzianum and Phanerochaete chrysosporium. Bioresour Technol 100:4773–4782. doi: 10.1016/j.biortech.2009.04.047 CrossRefPubMedGoogle Scholar
  31. 31.
    Tahseen O, Abdallah J, Omar JA (2014) In situ degradability of dry matter, crude protein, acid and neutral detergent fiber of olive cake and greenhouse wastes of tomato and cucumber. Rev Méd Vét 165:93–98Google Scholar
  32. 32.
    Fadel M, Helmy El-Ghonemy D (2015) Biological fungal treatment of olive cake for better utilization in ruminants nutrition in Egypt. Int J Recycl Org Waste Agric 4:261–271. doi: 10.1007/s40093-015-0105-3 CrossRefGoogle Scholar
  33. 33.
    Atkins PW (1998) Elements de chimie physique. De Boeck U, Paris BruxellesGoogle Scholar
  34. 34.
    McQuarrie C, McQuarrie D, Rock P (1992) Chimie generale. University of California, De BoeckGoogle Scholar
  35. 35.
    Brozzoli V, Bartocci S, Terramoccia S, Contò G, Federici F, Annibale AD, Petruccioli M (2010) Stoned olive pomace fermentation with Pleurotus species and its evaluation as a possible animal feed. Enzyme Microb Technol 46:223–228. doi: 10.1016/j.enzmictec.2009.09.008 CrossRefGoogle Scholar
  36. 36.
    Shabtay A, Hadar Y, Eitam H, Brosh A, Orlov A, Tadmor Y, Izhaki I, Kerem Z (2009) The potential of Pleurotus-treated olive mill solid waste as cattle feed. Bioresour Technol 100:6457–6464. doi: 10.1016/j.biortech.2009.07.044 CrossRefPubMedGoogle Scholar
  37. 37.
    Gharby S, Harhar H, Matthäus B, Bouzoubaa Z, Charrouf Z (2016) The chemical parameters and oxidative resistance to heat treatment of refined and extra virgin Moroccan Picholine olive oil. J Taibah Univ Sci 10:100–106. doi: 10.1016/j.jtusci.2015.05.004 CrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2017

Authors and Affiliations

  • Lamia Medouni-Haroune
    • 1
  • Farid Zaidi
    • 2
  • Sonia Medouni-Adrar
    • 3
  • Ourdia Nouara Kernou
    • 1
  • Samia Azzouz
    • 1
  • Mouloud Kecha
    • 1
  1. 1.Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la VieUniversité de BejaiaBejaiaAlgeria
  2. 2.Département des Sciences Alimentaires, Faculté des Sciences de la Nature et de la VieUniversité de BejaiaBejaiaAlgeria
  3. 3.Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la VieUniversité de BejaiaBejaiaAlgeria

Personalised recommendations