Skip to main content

Precocious Germination (Vivipary) in Tomato: A Link to Economic Loss?

Abstract

In plants, vivipary (precocious or premature germination) involves the germination of seeds while still on the parent plant. It is a widespread phenomenon in plants characterized by the lack of seed dormancy. Here, the first formal account of vivipary in tomato is presented. The aims of this study were to: (i) disseminate a straightforward description of the viviparous tomato fruits and the developmental changes of the progeny until complete development and (ii) quantify seeds in the new tomato fruits and highlight the economic impact of this reproductive strategy in the Solanaceae family and other commercial crops along with the biological significance of vivipary in plants. This study shows that the entire fruit with viviparous seedlings failed to perpetuate offspring, and when the seedlings were manually separated and transplanted, a high mortality rate (83.3%) was observed. Surviving seedlings matured and produced normal fruits with a disproportion of normal (54.7 ± 7.8) and abnormal (22.2 ± 4.4) seeds in relation to total number of seeds (76.9 ± 8.1), representing one-third loss in normal, viable seeds. These results shed light on the potential detrimental effect of vivipary in commercial crops and, ultimately, in wild plants. High incidence of vivipary in staple food crops is of paramount importance as it can undermine current and future productive yields and economic return for stakeholders. This trait is detrimental in commercial crops because it causes yield and viability losses and inferior nutritional and palatable qualities of fruits and unviable seeds.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Cota-Sánchez JH, Reyes-Olivas A, Sánchez-Soto B (2007) Vivipary in coastal cacti: a potential reproductive strategy in halophytic environments. Am J Bot 94:1577–1581

    Article  PubMed  Google Scholar 

  2. Martin RD (2008) Evolution of placentation in primates: implications of mammalian phylogeny. Evol Biol 35:125–145

    Article  Google Scholar 

  3. Baskin CC, Baskin JM (2001) Seeds—ecology, biogeography and evolution of dormancy and germination. Academic Press, San Diego

    Google Scholar 

  4. Farnsworth EJ (2000) The ecology and physiology of viviparous and recalcitrant seeds. Annu Rev Ecol Syst 31:107–138

    Article  Google Scholar 

  5. Farnsworth EJ (2004) Hormones and shifting ecology throughout plant development. Ecology 85:5–15

    Article  Google Scholar 

  6. Cota-Sánchez JH (2004) Vivipary in the Cactaceae: its taxonomic occurrence and biological significance. Flora 199:481–490

    Article  Google Scholar 

  7. Batygina TB, Bragina EA (2009) Vivipary. In: Batygina TB (ed) Embryology of flowering plants, vol 3. Reproductive systems. Science Pub., Enfield, pp 19–29

    Google Scholar 

  8. Zhang L, Wang BL, Zang QY (2007) Progress in seed vivipary mechanism. Chin J Cell Biol 29:701–705

    CAS  Google Scholar 

  9. Farnsworth EJ, Farrant JM (1998) Reductions in abscisic acid are linked with viviparous reproduction in mangroves. Am J Bot 85:760–769

    CAS  Article  PubMed  Google Scholar 

  10. Tomlinson PB, Cox PA (2000) Systematic and functional anatomy of seedlings in mangrove Rhizophoraceae: Vivipary explained? Bot J Linn Soc 134:215–231

    Article  Google Scholar 

  11. Cota-Sánchez JH, Abreu DD (2007) Vivipary and offspring survival in the epiphytic cactus Epiphyllum phyllanthus (Cactaceae). J Exp Bot 58:3865–3873

    Article  PubMed  Google Scholar 

  12. Rabinowitz D (1978) Dispersal properties of mangrove propagules. Biotropica 10:47–57

    Article  Google Scholar 

  13. Lee JA, Harmer R (1980) Vivipary, a reproductive strategy in response to environmental stress? Oikos 35:254–265

    Article  Google Scholar 

  14. Elmqvist T, Cox PA (1996) The evolution of vivipary in flowering plants. Oikos 77:3–9

    Article  Google Scholar 

  15. Cota-Sánchez JH, Reyes-Olivas A, Abreu DD et al (2011) Vivipary in the cactus family: a reply to Ortega-Baes’ et al. evaluation of 25 species from northwestern Argentina. J Arid Environ 75:878–880

    Article  Google Scholar 

  16. Tsiantis M (2006) Plant development: multiple strategies for breaking seed dormancy. Curr Biol 16:R25–R27

    CAS  Article  PubMed  Google Scholar 

  17. De Castro RD, Hilhorst HWM (2000) Dormancy, germination and the cell cycle in developing and imbibing tomato seeds. Rev Bras Fisiol Veg 12:105–136

    Article  Google Scholar 

  18. Limberk J, Ulrychová M (1972) Vivipary in fruits of tomato plants infected with a mycoplasma disease—potato Witches’broom. J Phytopathol 73:227–234

    Article  Google Scholar 

  19. Downie B, Gurusinghe S, Braford KJ (1999) Internal anatomy of individual tomato seeds: relationship to abscisic acid and germination physiology. Seed Sci Res 9:117–128

    Google Scholar 

  20. Mahideem MK, Mussain SJ, Subbiah KK (1973) Vivipary in chillies (Capsicum annuum). South Indian Hort 21:73–74

    Google Scholar 

  21. Yadav PV, Kumari M, Ahmed Z (2011) Occurrence of vivipary in Capsicum annuum L. cv. California wonder. Curr Sci 100:1122

    Google Scholar 

  22. Singh B, Khanna KR (1979) Vivipary in brinjal (Solanum melongena L.) [Eggplant, India]. Indian J Hortic 36:175–176

    Google Scholar 

  23. Eyster WH (1931) Vivipary in maize. Genetics 16:574–590

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Neill SJ, Horgan R, Rees AF (1987) Seed development and vivipary in Zea mays L. Planta 171:358–364

    CAS  Article  PubMed  Google Scholar 

  25. Butler WM, Cuming AC (1993) Differential molecular responses to abscisic acid and osmotic stress in viviparous maize embryos. Planta 189:47–54

    CAS  Article  Google Scholar 

  26. Derera NF, Bhatt GM, McMaster GJ (1977) On the problem of pre-harvest sprouting on wheat. Euphytica 26:299–308

    CAS  Article  Google Scholar 

  27. Pope MN (1949) Viviparous growth in immature barley kernels. J Agric Res 78:295–309

    Google Scholar 

  28. Kostoff D (1940) A case of vivipary in rye. Curr Sci 9:279–280

    Google Scholar 

  29. Sankaran M, Damodaran V, Singh DR, Jerard BA (2012) Vivipary in Cocos nucifera L. var. Andaman green dwarf. Curr Sci 103:1139–1140

    Google Scholar 

  30. Pryke PI (1978) Dormancy failure in beans seeds (vivipary). Annu Rep Bean Improv Coop 21:24–25

    Google Scholar 

  31. Ruan S, Xianming D, Weimin H (2000) Occurrence of seed vivipary in hybrid rape (Brassica napus L.) and its effect on seed quality. J Shejiang Univ 26:573–578

    CAS  Google Scholar 

  32. Chakraborty TK, Chaudhuri SD (2008) Occurrence of vivipary in papaya plant (Carica papaya L.). Indian For 134:1543–1544

    Google Scholar 

  33. Sparks D, Reid W, Yates IE et al (1995) Fruiting stress induces shuck decline and pre-mature germination in pecan. J Am Soc Hortic Sci 120:43–53

    Google Scholar 

  34. Wood BW, Reilly CC (1999) Factors influencing water split of pecan fruit. HortScience 34:215–217

    Google Scholar 

  35. Gorman SW, McCormick S (1997) Male sterility in tomato. Crit Rev Plant Sci 16:31–53

    CAS  Article  Google Scholar 

  36. Fellner M, Sawhney VK (2001) Seed germination in a tomato male-sterile mutant is resistant to osmotic, salt and low temperature stresses. Theor Appl Genet 102:215–221

    CAS  Article  Google Scholar 

  37. Sawhney VK (1983) Temperature control of male sterility in a tomato mutant. J Hered 74:51–54

    Article  Google Scholar 

  38. Sawhney VK (2004) Photoperiod-sensitive male-sterile mutant in tomato and its potential use in hybrid seed production. J Hortic Sci Biotech 79:138–141

    Article  Google Scholar 

  39. Yan ZZ, Wang WQ, Huang WB (2004) Development of the viviparous hypocotyl of mangrove and its adaptation to inter-tidal habitats. Acta Ecol Sin 24:2317–2323

    Google Scholar 

  40. Barrios D, González-Torres LR, García-Beltrán JA (2012) Vivipary in Cuban cacti: a pioneer study in Leptocereus scopulophilus. Bradleya 30:147–150

    Article  Google Scholar 

  41. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  42. Groot SPC, Karssen CM (1992) Dormancy and germination of abscisic acid-deficient tomato seeds. Plant Physiol 99:952–958

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Marrush M, Yamaguchi M, Saltveit ME (1998) Effect of potassium nutrition during bell pepper seed development on vivipary and endogenous levels of abscisic acid (ABA). J Am Soc Hort Sci 123:925–930

    CAS  Google Scholar 

  44. Finkelstein RR, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    CAS  Article  PubMed  Google Scholar 

  45. Varga A, Bruinsma J (1986) Tomato. In: Monselise SP (ed) CRC handbook of fruit set and development. CRC Press, Boca Raton, pp 461–481

    Google Scholar 

  46. Demir I, Samit Y (2001) Quality of tomato seeds as affected by fruit maturity at harvest and seed extraction method. Gartenbauwissenschaft 66:S199–S202

    Google Scholar 

  47. Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Rodríguez MV, Toorop PE, Benech-Arnold RL (2011) Challenges facing seed banks and agriculture in relation to seed quality. In: Kermode AR (ed) Seed dormancy. Humana Press, New York, pp 17–40

    Chapter  Google Scholar 

  49. Tweddle JC, Dickie JB, Baskin CC, Baskin JM (2003) Ecological aspects of seed desiccation sensitivity. J Ecol 91:294–304

    Article  Google Scholar 

  50. Kermode AR (2005) Role of abscisic acid in seed dormancy. J Plant Growth Regul 24:319–344

    CAS  Article  Google Scholar 

  51. Rodríguez-Gacio MC, Matilla-Vázquez MA, Matilla AJ (2009) Seed dormancy and ABA signaling: the breakthrough goes on. Plant Signal Behav 4:1035–1048

    Article  Google Scholar 

  52. Matilla AJ, Matilla-Vázquez MA (2008) Involvement of ethylene in seed physiology. Plant Sci 175:87–97

    CAS  Article  Google Scholar 

  53. Finkelstein RR, Srinivas S, Gampala L, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Thite SV, Hande PR, Kore BA (2015) Occurrence of vivipary in Memecylon umbellatum Burm. Proc Natl Acad Sci India Sect B Biol Sci. doi:10.1007/s40009-015-0408-y

    Article  Google Scholar 

  55. Sinu PA, Shivana KR (2015) Factors affecting recruitment of a critically-endangered dipterocarp species, Vateria indica in the Western Ghats, India. Proc Natl Acad Sci India Sect B Biol Sci. doi:10.1007/s40011-015-0535-8

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Kathy Clark (http://1-kathy-clark.artistwebsites.com/art/all/tomato/all) for providing the picture of the viviparous tomato (Fig. 1a), and D. Falconer, D. Litwiller, and R. Vera for critical comments on previous drafts of the manuscript. Research Funding for this study provided by the University of Saskatchewan Bridge Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hugo Cota-Sánchez.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Additional information

Significance statement

Vivipary, seed germination within the fruit prior to detachment from maternal tissue, is a significant biological event in wild and agricultural plants. Annual crops, e.g., tomato, rice and maize, lack seed dormancy resulting in premature sprouting and lower yields. This creates challenges in maintaining food supplies and negatively affects species diversity and natural seed bank repositories.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hugo Cota-Sánchez, J. Precocious Germination (Vivipary) in Tomato: A Link to Economic Loss?. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 88, 1443–1451 (2018). https://doi.org/10.1007/s40011-017-0878-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-017-0878-4

Keywords

  • Agricultural loss
  • Precocious germination
  • Tomato
  • Seed
  • Seedling establishment
  • Vivipary