Advertisement

Extracellular Lipase Purification from a Marine Planomicrobium sp. MR23K and Productivity Optimization in a Pilot-Scale Submerged Bioreactor

  • Manouchehr Teymouri
  • Maryam Karkhane
  • Farhad Gilavand
  • Javad Akhtari
  • Abdolrazagh Marzban
Research Article

Abstract

A halotolerant Planomicrobium species with remarkable lipase activity, isolated from the sediments of a mangrove, was investigated for the lipase purification, yield and production improvement. The enzyme purification was increased by 12.86-folds using a two-step purification process by ammonium sulfate precipitation and gel filtration chromatography. Subsequently, a submerged fermentation was optimized for the maximum lipase production using a response surface method (RSM). Several variables, comprising 8 nutritional variables along with pH, temperature and agitation speed were screened for the effective ones by Placket–Burman design (PBD). The effective variables were further examined for their optimum levels for the enzyme production using a central composite design (CCD). NaCl (1.28 % w/v), glucose (1.20 % w/v), olive oil (1.35 % w/v), peptone (0.69 % w/v) and pH (7.8) were found to be effective in maximizing the enzyme productivity in a lab scale (10.08 U/ml of cell-free supernatant) and a 10 l fermenter (9.89 U/ml). The results suggested that the model is accurate and consistent in predicting the best condition. Therefore, the strain under this specific fermentation condition promises a good prospect for a large-scale lipase production.

Keywords

Lipase production Enzyme purification Fermentation optimization Response surface method Placket–Burman design Planomicrobium sp. MR23K 

Notes

Acknowledgments

The authors are very thankful of Dr. Kavyani for helpful advices and also appreciate of all postgraduate students in Shahid Beheshti University for scientific suggestions about statistical analysis and fermentation method.

Compliance with Ethical Standards

Conflict of interest

The authors would like to confirm that there is no conflict of interest associated with this publication and there has been no significant facilities that cover financial matters for this work.

References

  1. 1.
    Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64(6):763–781. doi: 10.1007/s00253-004-1568-8 CrossRefPubMedGoogle Scholar
  2. 2.
    Bora L, Gohain D, Das R (2013) Recent advances in production and biotechnological applications of thermostable and alkaline bacterial lipases. J Chem Technol Biotechnol 88(11):1959–1970. doi: 10.1002/jctb.4170 CrossRefGoogle Scholar
  3. 3.
    Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16(9):396–403. doi: 10.1016/S0167-7799(98)01195-0 CrossRefPubMedGoogle Scholar
  4. 4.
    Bussamara R, Fuentefria AM, Oliveira ESd, Broetto L, Simcikova M, Valente P, Schrank A, Vainstein MH (2010) Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation. Bioresour Technol 101(1):268–275. doi: 10.1016/j.biortech.2008.10.063 CrossRefPubMedGoogle Scholar
  5. 5.
    Abramić M, Leščić I, Korica T, Vitale L, Saenger W, Pigac J (1999) Purification and properties of extracellular lipase from Streptomyces rimosus. Enzyme Microb Technol 25(6):522–529. doi: 10.1016/S0141-0229(99)00077-0 CrossRefGoogle Scholar
  6. 6.
    Adan Gökbulut A, Arslanoǧlu A (2013) Purification and biochemical characterization of an extracellular lipase from psychrotolerant Pseudomonas fluorescens KE38. Turk J Biol 37(5):538–546. doi: 10.3906/biy-1211-10 CrossRefGoogle Scholar
  7. 7.
    Ahmed EH, Raghavendra T, Madamwar D (2010) An alkaline lipase from organic solvent tolerant Acinetobacter sp. EH28: application for ethyl caprylate synthesis. Bioresour Technol 101(10):3628–3634. doi: 10.1016/j.biortech.2009.12.107 CrossRefPubMedGoogle Scholar
  8. 8.
    Amoozegar MA, Salehghamari E, Khajeh K, Kabiri M, Naddaf S (2008) Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2. J Basic Microbiol 48(3):160–167. doi: 10.1002/jobm.200700361 CrossRefPubMedGoogle Scholar
  9. 9.
    Anbu P, Hur BK (2014) Isolation of an organic solvent-tolerant bacterium Bacillus licheniformis PAL05 that is able to secrete solvent-stable lipase. Biotechnol Appl Biochem. doi: 10.1002/bab.1202 PubMedCrossRefGoogle Scholar
  10. 10.
    Gunasekaran V, Das D (2005) Lipase fermentation: progress and prospects. Indian J Biotechnol 4(4):437–445Google Scholar
  11. 11.
    Esteban-Torres M, Mancheño JM, de las Rivas B, Munoz R (2015) Characterization of a halotolerant lipase from the lactic acid bacteria Lactobacillus plantarum useful in food fermentations. LWT Food Sci Technol 60(1):246–252CrossRefGoogle Scholar
  12. 12.
    Ruchi G, Anshu G, Khare S (2008) Lipase from solvent tolerant Pseudomonas aeruginosa strain: production optimization by response surface methodology and application. Bioresour Technol 99(11):4796–4802CrossRefPubMedGoogle Scholar
  13. 13.
    Hill WJ, Hunter WG (1966) A review of response surface methodology: a literature survey. Technometrics 8(4):571–590CrossRefGoogle Scholar
  14. 14.
    Winkler UK, Stuckmann M (1979) Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138(3):663–670PubMedPubMedCentralGoogle Scholar
  15. 15.
    Esteban-Torres M, Mancheño JM, de las Rivas B, Muñoz R (2014) Production and characterization of a tributyrin esterase from Lactobacillus plantarum suitable for cheese lipolysis. J Dairy Sci. doi: 10.3168/jds.2014-8234 PubMedCrossRefGoogle Scholar
  16. 16.
    Kruger NJ (2002) The Bradford method for protein quantitation. In: Walker JW (ed) The protein protocols handbook, 2nd edn. Humana Press Inc., Totowa, pp 15–21Google Scholar
  17. 17.
    Gupta N, Rathi P, Gupta R (2002) Simplified para-nitrophenyl palmitate assay for lipases and esterases. Anal Biochem 311(1):98–99CrossRefPubMedGoogle Scholar
  18. 18.
    Singh R, Gupta N, Goswami VK, Gupta R (2006) A simple activity staining protocol for lipases and esterases. Appl Microbiol Biotechnol 70(6):679–682CrossRefPubMedGoogle Scholar
  19. 19.
    Ogino H, Nakagawa S, Shinya K, Muto T, Fujimura N, Yasuda M, Ishikawa H (2000) Purification and characterization of organic solvent-stable lipase from organic solvent-tolerant Pseudomonas aeruginosa LST-03. J Biosci Bioeng 89(5):451–457CrossRefPubMedGoogle Scholar
  20. 20.
    Tamilarasan K, Kumar MD (2012) Purification and characterization of solvent tolerant lipase from Bacillus sphaericus MTCC 7542. Biocatal Agric Biotechnol 1(4):309–313Google Scholar
  21. 21.
    Panigrahi AK, Panda AK, Bisht SPS (2014) Production and purification of a thermostable lipase from a hyperactive bacterial isolate Brevibacillus sp. from Taptapani hot spring, Odisha. Int J Pharma Bio Sci 5(4):B320–B327Google Scholar
  22. 22.
    Mykytczuk NC, Foote SJ, Omelon CR, Southam G, Greer CW, Whyte LG (2013) Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J 7(6):1211–1226CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lee D-W, Kim H-W, Lee K-W, Kim B-C, Choe E-A, Lee H-S, Kim D-S, Pyun Y-R (2001) Purification and characterization of two distinct thermostable lipases from the gram-positive thermophilic bacterium Bacillus thermoleovorans ID-1. Enzyme Microb Technol 29(6):363–371CrossRefGoogle Scholar
  24. 24.
    Chang S-W, Shaw J-F, Yang K-H, Chang S-F, Shieh C-J (2008) Studies of optimum conditions for covalent immobilization of Candida rugosa lipase on poly (γ-glutamic acid) by RSM. Bioresour Technol 99(8):2800–2805CrossRefPubMedGoogle Scholar
  25. 25.
    Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39(2):235–251CrossRefGoogle Scholar
  26. 26.
    Nerurkar M, Joshi M, Adivarekar R (2015) Bioscouring of cotton using lipase from marine bacteria Bacillus sonorensis. Appl Biochem Biotechnol 175(1):253–265CrossRefPubMedGoogle Scholar
  27. 27.
    Lan D, Hou S, Yang N, Whiteley C, Yang B, Wang Y (2011) Optimal production and biochemical properties of a lipase from Candida albicans. Int J Mol Sci 12(10):7216–7237CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2016

Authors and Affiliations

  • Manouchehr Teymouri
    • 1
    • 2
  • Maryam Karkhane
    • 3
  • Farhad Gilavand
    • 4
  • Javad Akhtari
    • 5
  • Abdolrazagh Marzban
    • 2
  1. 1.School of MedicineGonabad University of Medical SciencesGonabadIran
  2. 2.Biotechnology Research Center, School of PharmacyMashhad University of Medical SciencesMashhadIran
  3. 3.Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
  4. 4.Department of Biology, Khorramabad BranchIslamic Azad UniversityKhorramabadIran
  5. 5.Immunogenetics Research Center, Department of Physiology and Pharmacology, Faculty of MedicineMazandaran University of Medical SciencesSariIran

Personalised recommendations