Skip to main content

Taxonomic and Biochemical Composition and Digestive Enzyme Activity of Periphyton and Plankton: A Comparative Study

Abstract

Periphyton grown on sugarcane bundles was analyzed for major digestive enzymes in order to quantify their possible exogenous digestive enzyme contribution to the grazing fish. The proximate and taxonomic composition of constituent planktonic organisms of periphyton was compared with that of free plankton. Further, the activity of major digestive enzymes in the extracts of periphyton and free plankton was also compared. The proximate composition analysis revealed periphyton to contain more (P < 0.05) crude protein, ash, crude fibre and NFE (nitrogen-free extract) with lesser moisture content as compared to plankton. The species composition of periphyton from bagasse revealed that plankton belonging to Chlorophyceae were dominant (25.3 %), followed by Cyanophyceae (19.7 %), Bacillariophyceae (16.9 %), Conjugatophyceae (8.4 %), Desmidaceae (4.2 %), Euglenophyceae (5.6 %), Ulvophyceae (4.2 %), Dinophyceae (1.4 %), Xanthophyeae (1.4 %), Florideophyceae (1.4 %), Trebouxiophyceae (1.4 %) and zooplankton (10 %). Free plankton consisted of Chlorophyceae (24.2 %), Cyanophyceae (15.1 %), Bacillariophyceae (9.1 %), Conjugatophyceae (6.1 %), Coscinodiscophyceae (3 %), Trebouxiophyceae (3 %) and zooplankton (39.4 %). The activity of majority of digestive protease and amylase was higher in plankton and that of chymotrypsin was higher in periphyton, while lipase activity did not show any difference between plankton and periphyton. The study indicates that periphyton being a natural food is nutritionally superior to free plankton and can contribute digestive enzymes to the grazing fish, in addition to the nutrients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Lim CL, Dhert P, Soregloos P (2003) Recent developments in the application of live feeds in the freshwater ornamental fish culture. Aquaculture 227:319–331

    Article  Google Scholar 

  2. 2.

    Mandal SC, Das P, Singh SK, Bhagabati SK (2009) Feeding of aquarium fishes with natural and artificial foods: available options and future needs. Aqua Int 3:20–23

    Google Scholar 

  3. 3.

    Moksness E, Kjørsvik E, Olsen Y (eds) (2004) Culture of cold-water marine fish. Blackwell Publishing, Hoboken, p 528

    Google Scholar 

  4. 4.

    Koven W, Kolkovski S, Hadas E, Gamsiz KTA (2001) Advances in the development of microdiets for gilthead seabream, Sparus aurata: a review. Aquaculture 194:107–121

    Article  CAS  Google Scholar 

  5. 5.

    Vadstein O, Mo TA, Bergh Ø (2004) Microbial interactions, prophylaxis and diseases. In: Moksness E, Kjørsvik E, Olsen Y (eds) Culture of cold-water marine fishes. Blackwell Publishing, Bath, pp 28–72

    Chapter  Google Scholar 

  6. 6.

    Sharma K, Bansal N, Shashank Singh G (2011) Studies on breeding and feeding patterns of the goldfish, Carassius auratus under captive conditions for sustainable ornamental fish hatchery management. Livest Res Rural Dev Article #231. http://www.lrrd.org/lrrd23/11/shar23231.htm

  7. 7.

    Saurabh S, Sridhar N, Gangadhar B, Raghavendra CH, Raghunath MR, Hemaprasanth KP, Swain SK, Jayasankar P (2013) Growth performance of fry of the black-spot barb Puntius filamentosus (Valenciennes, 1844) fed live feeds and artificial feed. Indian J Fish 60(4):137–140

    Google Scholar 

  8. 8.

    Keshavanath P, Gangadhar B, Ramesh TJ, vanRooij JM, Beveridge MCM, Baird DJ, Verdegem MCJ, van Dam AA (2001) Use of artificial substrates to enhance production of freshwater herbivorous fish in pond culture. Aquac Res 32:189–197

    Article  CAS  Google Scholar 

  9. 9.

    Gangadhar B, Keshavanath P (2012) Growth performance of rohu, Labeo rohita (Ham.) in tanks provided with different levels of sugarcane bagasse as periphyton substrate. Indian J Fish 59:77–82

    Google Scholar 

  10. 10.

    Horn MH (1989) Biology of marine herbivorous fishes. Oceanogr Mar Biol Ann Rev 27:167–272

    Google Scholar 

  11. 11.

    New MB (1998) Global aquaculture: current trends and challenges for the 21st century. In: Proceedings of Aquicultura Brasil ’98, 2 – 6 November 1998, Recife, Brasil.  Anans do Aquacultura Brasil 98, vol I, pp 9–57

  12. 12.

    Farhadian O, Kolivand S, Khoshdarehgy M, Dorch EE, Soofiani MN (2013) Nutritional value of freshwater mesozoplankton assemblages from Hanna Dam Lake, Iran, during a one year study. Iran J Fish Sci 12(2):301–319

    Google Scholar 

  13. 13.

    Yun MS, Lee DB, Kim BK, Kang JJ, Lee JH, Yang EJ, Park WG, Chung KH, Lee SH (2015) Comparison of phytoplankton macromolecular compositions and zooplankton proximate compositions in the northern Chukchi Sea. Deep Sea Res II. doi:10.1016/j.dsr2.2014.05.018

  14. 14.

    Mitra Gopa, Mukhopadhyay PK, Ayyappan S (2007) Biochemical composition of zooplankton community grown in freshwater earthen ponds: nutritional implication in nursery rearing of fish larvae and early juveniles. Aquaculture 272(1):346–360

    Article  CAS  Google Scholar 

  15. 15.

    AOAC (1995) Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Washington

    Google Scholar 

  16. 16.

    Asaduzzaman M, Wahab MA, Verdegem MCJ, Adhikary RK, Rahman SMS, Azim ME, Verreth JAJ (2010) Effects of carbohydrate source for maintaining a high C:N ratio and fish driven re-suspension on pond ecology and production in periphyton-based freshwater prawn culture systems. Aquaculture 301:37–46

    Article  CAS  Google Scholar 

  17. 17.

    Gangadhar B, Keshavanath P (2008) Planktonic and biochemical composition of periphyton grown on some biodegradable and non-degradable substrates. J Appl Aquac 20:213–232

    Article  Google Scholar 

  18. 18.

    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  19. 19.

    Rick W, Stegbauer HP (1974) α-Amylase: measurement of reducing groups. Methods Enzym Anal 2:885–915

    Article  Google Scholar 

  20. 20.

    Kuntiz M (1947) Crystalline soybean trypsin inhibitor. II. General properties. J Gen Physiol 30:291–310

    Article  Google Scholar 

  21. 21.

    Erlanger BF, Kokowsky M, Cohen W (1961) The preparation and properties of two new chromogenic substrates for trypsin. Arch Biochem Biophys 95:271–278

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Appel W (1974) Peptidases. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 2. Academic Press, New York, pp 949–954

    Chapter  Google Scholar 

  23. 23.

    Licia MP, Mario MR, Guillermo RC (2006) Catalytic properties of lipase extracts from Aspergillus niger. Food Technol Biotechnol 44:247–252

    Google Scholar 

  24. 24.

    Snedecor GW, Cochran GW (1968) Statistical methods. Oxford and IBH Publishing Company, Calcutta

    Google Scholar 

  25. 25.

    Biggs BJF, Smith RA (2002) Taxonomic richness of stream benthic algae: effects of flood disturbance and nutrients. Limnol Oceanogr 47:1175–1186

    Article  CAS  Google Scholar 

  26. 26.

    Maltais MJ, Vincent WF (1997) Periphyton community structure and dynamics in a Subarctic lake. Can Bot 75:1556–1569

    Article  Google Scholar 

  27. 27.

    Munoz I, Real M, Guasch H, Navarro E, Sabater S (2000) Resource limitation by freshwater snail (Stagnicola vulnerata) grazing pressure: an experimental study. Arch Hydrobiol 148:517–532

    Article  CAS  Google Scholar 

  28. 28.

    Goldborough LG, Robinson GGC (1985) Seasonal succession of diatom epiphyton on dense mats of Lemma minor. Can Bot 63:2332–2339

    Article  Google Scholar 

  29. 29.

    Stelzer SR, Lamberti GA (2001) Effects of N:P ratio and total nutrient concentration on stream periphyton: community structure, biomass, and elemental composition. Limnol Oceanogr 46:356–367

    Article  Google Scholar 

  30. 30.

    Verb RG, Vis ML (2000) Comparison of benthic diatom assemblages from streams draining abandoned and reclaimed coal mines and nonimpacted sites. J North Am Benthol Soc 19:274–288

    Article  Google Scholar 

  31. 31.

    Blenkinsopp SA, Lock MA (1994) The impact of storm-flow on river biofilm architecture. J Phycol 30:807–818

    Article  Google Scholar 

  32. 32.

    Hassan FM, Taylor WD, Al-Taee MS, Al-Fatlawi HJJ (2010) Phytoplankton composition of Euphrates river between Al-Hindiya Barrage and Kifil city. Iraq J Environ Biol 31:343–350

    PubMed  Google Scholar 

  33. 33.

    Wahab MA, Manan MA, Huda MA, Azim ME, Tollervey AG, Beveridge MCM (1999) Effect of periphyton growth on bamboo substrates on growth and production of Indian major carp, rohu (Labeo rohita). Bangladesh J Fish Res 3:1–10

    Google Scholar 

  34. 34.

    Saikia SK, Das DN (2010) First report on Xeng fishery—a periphyton based aquaculture practice in Assam, India. Sibcoltejo 5:102–106

    Google Scholar 

  35. 35.

    Rai S, Yi Y, Wahab MA, Bart AN, Diana JS (2010) Comparison of the growth and production of carps in polyculture ponds with supplemental feed using rice straw and Kanchi as substrates. Our Nat 8:92–105

    Google Scholar 

  36. 36.

    Montgomery WL, Gerking SD (1980) Marine macro-algae as food for fishes: an evaluation of potential food quality. Environ Biol Fishes 5:143–153

    Article  Google Scholar 

  37. 37.

    Polunin NVC (1988) Efficient uptake of algal production by single residence herbivorous fish on the reef. J Exp Mar Biol Ecol 123:61–76

    Article  Google Scholar 

  38. 38.

    Dempster PW, Baird DJ, Beveridge MCM (1995) Can fish survive by filter-feeding on microparticles? Energy balance in tilapia grazing on algal suspensions. J Fish Biol 47:7–17

    Article  Google Scholar 

  39. 39.

    Van Dam AA, Beveridge MCM, Azim ME, Verdegem MCJ (2002) The potential of fish production based on periphyton. Rev Fish Biol Fish 12:1–31

    Article  Google Scholar 

  40. 40.

    Mridula RM, Manissery JK, Keshavanath P, Shankar KM, Nandeesha MC, Rajesh KM (2003) Water quality, biofilm production and growth of fringe-lipped carp (Labeo fimbriatus) in tanks provided with two solid substrates. Biores Technol 87:263–267

    Article  CAS  Google Scholar 

  41. 41.

    Sripada RA, Rivonker CU, Parulekar AH (1992) Biochemical composition and caloric potential of zooplankton from Bay of Bengal. Indian J Mar Sci 21:70–73

    Google Scholar 

  42. 42.

    Yakupitiyage A (1993) Constraints to the use of plant fodder as fish feed in tropical small-scale tilapia culture systems: an overview. In: Kaushik SJ, Liquet P (eds) Fish nutrition in practice. Institut National de la Rechereche Agronomique, Les Colleuques, no. 61, Paris, pp 681–689

  43. 43.

    Hossain MA, Nahar N, Kamal M (1997) Nutrient digestibility coefficients of some plant and animal proteins for rohu (Labeo rohita). Aquaculture 151(1):37–45

    Article  CAS  Google Scholar 

  44. 44.

    Kaggwa RC, Kasule D, Van Dam AA, Kansiime F (2006) An initial assessment of the use of wetland plants as substrates for periphyton production in seasonal wetland fishponds in Uganda. Int J Ecol Environ Sci 32(1):63–74

    Google Scholar 

  45. 45.

    Dabrowski KR (1982) Further study on dry diet formulation for common carp larvae. Riv Ital Piscic Ittiopatol 17:11–39

    Google Scholar 

  46. 46.

    Dabrowski K, Glogowski J (1977) Studies on the role of exogenous proteolytic enzymes in digestion processes in fish. Hydrobiologia 54(2):129–134

    Article  CAS  Google Scholar 

  47. 47.

    García-Jiménez P, Rodrigo M, Robaina R (1998) Influence of plant growth regulators, polyamines and glycerol interaction on growth and morphogenesis of carposporelings of Gratelou-pia cultured in vitro. J Appl Phycol 10:95–100

    Article  Google Scholar 

  48. 48.

    Fioramonti J, Fargeas MJ, Bertrand V, Pradayrol I, Bueno L (1994) Induction of postprandial intestinal motility and release of cholecystokinin by polyamines in rats. Am J Physiol 267:G960–G965

    PubMed  CAS  Google Scholar 

  49. 49.

    Le Vay L, Rodriguez A, Kamarudin MS, Jones DA (1993) Influence of live and artificial diets on tissue composition and trypsin activity in Penaeus japonicus larvae. Aquaculture 118:287–297

    Article  Google Scholar 

  50. 50.

    Munilla-Moran R, Stark JR, Babour A (1990) The role of exogenous enzymes in digestion in cultured turbot larvae (Scopththalmus maximus L.). Aquaculture 88:337–350

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful the Department of Biotechnology, New Delhi for funding support to conduct this study under the Project No. BT/PR5388/AAQ/3/594/2012 and the Director, Central Institute of Freshwater Aquaculture (ICAR), Bhubaneswar for the infrastructure facility provided.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Barlaya Gangadhar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gangadhar, B., Sridhar, N., Umalatha, H. et al. Taxonomic and Biochemical Composition and Digestive Enzyme Activity of Periphyton and Plankton: A Comparative Study. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 88, 715–720 (2018). https://doi.org/10.1007/s40011-016-0805-0

Download citation

Keywords

  • Periphyton
  • Plankton
  • Digestive enzymes
  • Proximate composition
  • Taxonomy