Skip to main content

Advertisement

Log in

Influence of Metal Nanoparticles (NPs) on Germination and Yield of Oat (Avena sativa) and Berseem (Trifolium alexandrinum)

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Assessment of effect of nanoparticles on plant growth is essential before adopting nanotechnology in agricultural sector. Four types of metal/metal oxide nanoparticles (NPs) viz. Zinc oxide (ZnO), Titanium oxide (TiO2), Copper oxide (CuO) and Silver (Ag) were studied for their effect on seed germination, vigour and yield in fodder crops, oat and berseem. Nanoparticles were synthesized and characterized before seed treatment. Seeds were treated with NPs at 750 mg (D1), 1000 mg (D2) and 1250 mg/kg of seed (D3). The effect of nanoparticles on seed germination and vigour was studied in the laboratory and seedling emergence rate, tiller number and seed yield were studied in the field. Nanoparticles (except TiO2 and CuO in berseem) enhanced germination at lower dose (D1), but reduction in root and shoot length was noticed at higher doses (D2 and D3). All four types of nanoparticles (NPs) in oat and only Ag in case of berseem enhanced germination to 100 % at lowest dose (D1). Substantial changes were noticed in field observations due to nanoparticle treatments regarding seedling emergence rate, tiller number and seed yield. Among the different NPs, TiO2 produced maximum seed yield at highest dose. No significant effect of nanoparticles on soil microbial populations was noticed during the field study. The experiment confirmed the dose-specific effect of nanoparticles on seed germination, crop growth and seed yield in oat and berseem crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tarafdar JC (2012) Perspectives of nanotechnological applications for crop production. NAAS News 12:8–11

    Google Scholar 

  2. Pramanik P, Maity A (2013) Nanopollution—a growing issue. Natl Environ Sci Acad Newsl 16(7):2

    Google Scholar 

  3. Subramanian KS, Tarafdar JC (2011) Prospects of nanotechnology in Indian farming. Indian J Agric Sci 81:887–893

    CAS  Google Scholar 

  4. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    Article  PubMed  CAS  Google Scholar 

  5. Lee WM, An YJ, Yoon H, Kwbon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxic Chem 27:1915–1921

    Article  CAS  Google Scholar 

  6. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227

    Article  PubMed  CAS  Google Scholar 

  7. Prasad TN, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927

    Article  CAS  Google Scholar 

  8. Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168–172

    CAS  Google Scholar 

  9. Zhang L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 106:279–297

    Article  Google Scholar 

  10. Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effects of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279

    Article  PubMed  CAS  Google Scholar 

  11. Hong F, Yang F, Liu C, Gao Q, Wan Z, Gu F, Wu C, Ma Z, Zhou J, Yang P (2005) Influence of nano-TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104:249–260

    Article  PubMed  CAS  Google Scholar 

  12. Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88

    Article  PubMed  CAS  Google Scholar 

  13. Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Elem Res 111:239–253

    Article  PubMed  CAS  Google Scholar 

  14. Moghaddam AB, Nazari T, Badraghi J, Kazemzad M (2009) Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film. Int J Electrochem Sci 4:247–257

    CAS  Google Scholar 

  15. Lee PC, Meisel D (1982) Adsorption and surface—enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  16. Wongpisutpaisan N, Charoonsuk P, Vittayakorn N, Pecharapa W (2011) Sonochemical synthesis and characterization of copper oxide nanoparticles. Energy Proced 9:404–409

    Article  CAS  Google Scholar 

  17. Arami H, Mazloumi M, Khalifehzadeh R, Sadmezhaad SK (2007) Sonochemical preparation of TiO2 nanoparticles. Mater Lett 61:4559–4561

    Article  CAS  Google Scholar 

  18. Braca A, Tommasi ND, Bari LD, Pizza C, Politi M, Morelli I (2001) Antioxidant principles from Bauhinia t arapotensis. J Nat Prod 64:892–895

    Article  PubMed  CAS  Google Scholar 

  19. Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  20. Omeliansky WL (1902) Ueber die Garung der Cellulose. Proc Indiana Acad Sci Cent F Bakt II 8:225–231

    Google Scholar 

  21. Subba Rao NS (1999) In soil microbiology, 4th edn. Oxford and IBH Pub. Co Pvt. Ltd., New Delhi

    Google Scholar 

  22. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A, Quigg A, Santschi PH, Sigg L (2008) Environmental behaviour and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  PubMed  CAS  Google Scholar 

  23. Wierzbicka M, Obidzin´SKA J (1998) The effect of lead on seed imbibition and germination in different plant species. Plant Sci 137:155–171

    Article  CAS  Google Scholar 

  24. Sresty TVS, Rao KVM (1999) Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpea. Environ Exp Bot 41:3–13

    Article  CAS  Google Scholar 

  25. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  PubMed  CAS  Google Scholar 

  26. Xuming W, Fengqing G, Linglan M, Jie L, Sitao Y, Ping Y, Fashui H (2008) Effects of nano-anatase on Ribulose-1, 5-bisphophate carboxylase/oxygenase mRNA expression in spinach. Biol Trace Elem Res 126:280–289

    Article  PubMed  CAS  Google Scholar 

  27. Riahi-Madvar A, Rezaee F, Jalali V (2012) Effects of alumina nanoparticles on morphological properties and antioxidant system of Triticum aestivum. Iran J Plant Physiol 3(1):595–603

    Google Scholar 

  28. Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornam Plants 3(1):25–32

    Google Scholar 

  29. Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148

    Article  CAS  Google Scholar 

  30. Corredor E, Testillano PS, Coronado MJ, González-Melendi P, Fernández-Pacheco R, Marquina C, Ibarra MR, de la Fuente JM, Rubiales D, Pérez-De-luque A, Risueño MC (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45–54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Rico C, Majumdar S, Duarte-Gardea M, Peralta JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:485–498

    Article  CAS  Google Scholar 

  32. Adhikari T, Kundu S, Biswas AK, Tarafdar J, Subba Rao A (2012) Effect of copper oxide nano particle on seed germination of selected crops. J Agric Sci Technol A 2:815–823

    CAS  Google Scholar 

  33. Roghayyeh SMS, Mehdi TS, Rauf SS (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Not Sci Biol 2:112–113

    Article  Google Scholar 

  34. Musante C, White JC (2010) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxic. doi:10.1002/tox.20667

    Article  Google Scholar 

  35. Miao AJ, Quigg A, Schwehr K, Xu C, Santschi P (2007) Engineered silver nanoparticles (ESNs) in coastal marine environments: bioavailability and toxic effects to the phytoplankton Thalassiosira weissflogii. In: Second international conference on the environmental effects of nanoparticles and nanomaterials, 24–25th sep, London UK

  36. Tong Z, Bischoffff M, Nies L, Apppplegate B, Turco RF (2007) Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol 51:2985–2991

    Article  CAS  Google Scholar 

  37. Nyberg L, Turco RF, Nies L (2008) Assensing the impact of nanomaterial on anaerobic microbial communities. Environ Sci Technol 42:1938–1943

    Article  PubMed  CAS  Google Scholar 

  38. Brunnnner TI, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and effect of particle solubility. Environ Sci Technol 40:4374–4381

    Article  CAS  Google Scholar 

  39. Murashov V (2006) Comments on ‘‘particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles’’ by Yang L, Watts DJ, Toxicology Letters, 2005, 158, 122–132. Toxicol Lett 164:185–187

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors duly acknowledge the facilities provided by Department of Nanoscience and Technology, Tamil Nadu Agriculture University, Coimbatore and Innovation Centre, Bundelkhand University, Jhansi to conduct the laboratory experiment and Indian Grassland and Fodder Research Institute, Jhansi to conduct rest of the study. To the best of the knowledge there is no conflict of interest involved in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniruddha Maity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, A., Natarajan, N., Vijay, D. et al. Influence of Metal Nanoparticles (NPs) on Germination and Yield of Oat (Avena sativa) and Berseem (Trifolium alexandrinum). Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 88, 595–607 (2018). https://doi.org/10.1007/s40011-016-0796-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-016-0796-x

Keywords

Navigation