Skip to main content

Advertisement

Log in

Immunolocalization of Musashi1 and Fibronectin Type III Domain Containing 3B in Water Buffalo Mammary Glands

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Water buffaloes are the principle source of milk in south Asia and Africa. Mammary gland repeatedly undergoes the cycles of growth and regeneration during pregnancy, lactation and involution. It is assumed that buffalo mammary gland has mammary stem and progenitor cells that regulate gland growth and regeneration. In the present study the authors analyzed percentage of cellular composition, proliferation status and putative mammary stem/progenitor cell population. Identification of putative buffalo mammary stem/progenitor cells was attempted using immunohistochemical staining with Musashi1 (MSI1), an adult stem cell marker and fibronectin type III domain containing 3B (FNDC3B), a mammary stem and cancer cell marker. Immunolocalization of MSI1 and FNDC3B showed nuclear and cytoplasmic staining of alveolar and ductal mammary epithelial cells (MEC) and a few stromal cells. The percentage of MSI1-positive MEC in non-lactating (3.31 ± 1.11 %), lactating (2.73 ± 0.78 %) and mastitic glands (3.30 ± 0.97 %) were equivalent, indicating that the proportion of putative stem/progenitor cell population did not differ during various physiological stages. Likewise, the percentage of FNDC3B-positive MEC in non-lactating (12.40 ± 3.22 %) tended to be higher than lactating (8.19 ± 2.71 %) and mastitic glands (4.88 ± 2.37 %). In some cases, expression of MSI1 and FNDC3B was exceptionally high with high proliferative indices (37.6 ± 2.4 %)-an indication of tumor cells. This is the first report on expression of MSI1 and FNDC3B in buffalo mammary gland. Identification of buffalo mammary stem cells using MSI1 and FNDC3B requires further studies and functional validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Borghese A, Mazzi M (2005) Buffalo population and strategies in the world: FAO regional office for Europe inter-regional cooperative research network on buffalo (Escorena)

  2. NDDB (2015) National Dairy Development Board. http://www.nddb.org/English/Statistics/Pages/Milk-Production.aspx. Accessed 10 May 2015

  3. Choudhary RK, Capuco AV (2012) In vitro expansion of the mammary stem/progenitor cell population by xanthosine treatment. BMC Cell Biol 13:14. doi:10.1186/1471-2121-13-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Osińska E, Gajewska M, Majewska A, Motyl T (2015) Quantification of bovine mammary stem/progenitor cells by laser scanning and flow cytometry. Anim Sci Papers Rep 33:5–11

    Google Scholar 

  5. Colitti M (2010) Expression of putative stem cell markers related to developmental stage of sheep mammary glands. Anat Histol Embryol 39:555–562. doi:10.1111/j.1439-0264.2010.01028.x

    Article  CAS  PubMed  Google Scholar 

  6. Colitti M, Farinacci M (2009) Expression of a putative stem cell marker, Musashi 1, in mammary glands of ewes. J Mol Histol 40:139–149. doi:10.1007/s10735-009-9224-3

    Article  CAS  PubMed  Google Scholar 

  7. Wang X-Y, Yin Y, Yuan H et al (2008) Musashi1 modulates mammary progenitor cell expansion through proliferin-mediated activation of the wnt and notch pathways. Mol Cell Biol 28:3589–3599. doi:10.1128/MCB.00040-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tominaga K, Kondo C, Johmura Y et al (2004) The novel gene fad104, containing a fibronectin type III domain, has a significant role in adipogenesis. FEBS Lett 577:49–54. doi:10.1016/j.febslet.2004.09.062

    Article  CAS  PubMed  Google Scholar 

  9. Cai C, Rajaram M, Zhou X et al (2012) Activation of multiple cancer pathways and tumor maintenance function of the 3q amplified oncogene FNDC3B. Cell Cycle 11:1773–1781. doi:10.4161/cc.20121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fan X, Chen X, Deng W et al (2013) Up-regulated microRNA-143 in cancer stem cells differentiation promotes prostate cancer cells metastasis by modulating FNDC3B expression. BMC Cancer 13:61. doi:10.1186/1471-2407-13-61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pfefferle AD, Spike BT, Wahl GM, Perou CM (2015) Luminal progenitor and fetal mammary stem cell expression features predict breast tumor response to neoadjuvant chemotherapy. Breast Cancer Res Treat 149:425–437. doi:10.1007/s10549-014-3262-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Akers RM, Nickerson SC (2011) Mastitis and its impact on structure and function in the ruminant mammary gland. J Mammary Gland Biol Neoplasia 16:275–289. doi:10.1007/s10911-011-9231-3

    Article  PubMed  Google Scholar 

  13. Akers RM, Capuco AV, Keys JE (2006) Mammary histology and alveolar cell differentiation during late gestation and early lactation in mammary tissue of beef and dairy heifers. Livest Sci 105:44–49. doi:10.1016/j.livsci.2006.04.026

    Article  Google Scholar 

  14. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to imageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Claudon C, Francin M, Marchal E et al (1998) Proteic composition of corpora amylacea in the bovine mammary gland. Tissue Cell 30:589–595

    Article  CAS  PubMed  Google Scholar 

  16. Singh N, Roy KS (2006) Histochemical study on the mammary gland of Indian buffalo (Bubalus bubalis). Indian J Anim Sci 76:43–45

    CAS  Google Scholar 

  17. Paramshivn S, Ramesh GS, Ushakumary S et al (2014) Histological observations on the capsule and connective tissue stroma of mammary gland in Madras red sheep (Ovis aries). Asian J Sci Technol 5:292–294

    Google Scholar 

  18. Uhlen M, Fagerberg L, Hallstrom BM et al (2015) Tissue-based map of the human proteome. Science 347(80):1260419. doi:10.1126/science.1260419

    Article  PubMed  Google Scholar 

  19. Choudhary RK, Li RW, Evock-Clover CM, Capuco AV (2013) Comparison of the transcriptomes of long-term label retaining-cells and control cells microdissected from mammary epithelium: an initial study to characterize potential stem/progenitor cells. Front Oncol 3:21. doi:10.3389/fonc.2013.00021

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kaneko J, Chiba C (2009) Immunohistochemical analysis of Musashi-1 expression during retinal regeneration of adult newt. Neurosci Lett 450:252–257. doi:10.1016/j.neulet.2008.11.031

    Article  CAS  PubMed  Google Scholar 

  21. Rezza A, Skah S, Roche C et al (2010) The overexpression of the putative gut stem cell marker Musashi-1 induces tumorigenesis through wnt and notch activation. J Cell Sci 123:3256–3265. doi:10.1242/jcs.065284

    Article  CAS  PubMed  Google Scholar 

  22. Potten CS, Booth C, Tudor GL et al (2003) Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation 71:28–41

    Article  CAS  PubMed  Google Scholar 

  23. Akasaka Y, Saikawa Y, Fujita K et al (2005) Expression of a candidate marker for progenitor cells, Musashi-1, in the proliferative regions of human antrum and its decreased expression in intestinal metaplasia. Histopathology 47:348–356. doi:10.1111/j.1365-2559.2005.02223.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Rastriya Krishi Vikas Yogna (RKVY 7) for financial assistance during the year 2014–2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratan K. Choudhary.

Ethics declarations

Conflict of interest

It is declared that authors have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H., Choudhary, S., Pathak, D. et al. Immunolocalization of Musashi1 and Fibronectin Type III Domain Containing 3B in Water Buffalo Mammary Glands. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 88, 23–32 (2018). https://doi.org/10.1007/s40011-016-0730-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-016-0730-2

Keywords

Navigation