Skip to main content
Log in

Genetic Diversity in Corchorus olitorius Genotypes Using Jute SSRs

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Tossa jute (Corchorus olitorius L.) is an important lingo-cellulosic bast fibre-crop. It provides biodegradable and environment friendly fibre next to cotton, in terms of usage, global consumption, production, and availability. Narrow genetic diversity of the crop is the major hurdle, which is a demand at priority for any crop improvement programme. In the current investigation 138 jute genotypes of C. olitorius were characterized with ten jute specific SSR markers. A total of 23 alleles were amplified with an average of 2.3 alleles per locus and the PIC value ranged from 0.13 to 0.76 with an average of 0.455. The un-weighted pair-group method with arithmetic average cluster analysis of the 138 jute genotypes depicted a dendrogram using DARWIN, which divided the genetic resource into three major clusters. The study indicated the utility of SSR primers for providing useful and high levels of polymorphism for individual plant genotypes even with a narrow genetic base. Based on cluster analysis the most divergent genotypes identified were OIJ 167 (from Indonesia), OIM 058 and OIM 059 (India), however based on the agronomic traits as maximum plant height, basal diameter and fibre weight they were OIJ 245, OIJ (153 and 161) and OIJ 040, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://www.gbif.org

References

  1. Kundu BC (1951) Origin of jute. Indian J. Genetics 2:95–99

    Google Scholar 

  2. Kirby RH (1963) Vegetable fibres. Interscience Publishers, New York

    Google Scholar 

  3. Alam SS, Rahman ANMRB (2000) Karyotype analysis of three Corchorus species. Cytologia 65:443–446

    Article  Google Scholar 

  4. Singh DP (1976) Jute: Evolution of crop plants. In: Simonds NW (ed) Longman Publishers Company, London, pp 290–291

  5. Mondal R (2000) Diversified jute products. International Jute Organization Bangladesh, Dhaka, pp 115–118

    Google Scholar 

  6. Purseglove JW (1968) Tropical crops-dicotyledons, 2. Longman, Green and Co., Ltd., London

    Google Scholar 

  7. Alverson WS, Whitlock BA, Nyffeler R, Bayer C, Baum DA (1999) Phylogeny of the core Malvales: evidence from ndhF sequence data. Am J Bot 86:1474–1486

    Article  CAS  PubMed  Google Scholar 

  8. Whitlock BA, Karol KG, Alverson WS (2003) Chloroplast DNA sequences confirm the placement of the enigmatic Oceanopapaver within Corchorus (Grewioideae: Malvaceae s. l., formerly Tiliaceae). Int J Plant Sci 164:35–41

    Article  CAS  Google Scholar 

  9. Heywood VH, Brummitt RK, Culham A, Seberg O (2007) Flowering plant families of the world. R Bot Gard, Kew

    Google Scholar 

  10. Kundu BC (1956) Jute world’s foremost bast fibre. Botany, agronomy, disease and pests. Eco Bot 10:103–133

    Article  Google Scholar 

  11. Saunders M (2006) Recovery plan for the endangered native jute species, Corchoruous cunninghamee F. Muell in Queensland (2001–06). Natural Heritage Trust, Canberra, pp 1–29

    Google Scholar 

  12. Mahapatra AK, Saha A (2008) Genetic resources: jute and allied fibre corps. Jute and allied fibre updates. Central Research Institute for Jute and Allied Fibres, Kolkata, pp 18–37

    Google Scholar 

  13. Benor S, Blattner FR, Demissew S, Hammer K (2010) Collection and ethnobotanical investigation of Corchorus species in Ethiopia: potential leafy vegetables for dry regions. Genetic Res Crop Evol 57:293–306

    Article  Google Scholar 

  14. Edmonds JM  (1990) Herbarium survey of African Corchorus L. species. Systematic and ecogeographic studies on crop gene pools 4. International Board for Plant Genetic Resources, Rome

    Google Scholar 

  15. Ghosh T (1983) Handbook on jute. FAO, Rome, p 219

    Google Scholar 

  16. Bhaduri PN, Bairagi P (1968) Interspecific hybridization in jute (Corchorus capsularis x C. olitorius). Sci Cult 34:355–357

    Google Scholar 

  17. La Farge T, Friedman ST, Cock CG (1997) Improvement of fiber crops using genetics and biotechnology. In: Powell RM et al (eds) Paper and composites from agro-based resources. CRC Lewis Publishers, Boca Raton, pp 39–59

    Google Scholar 

  18. Anonymous (1997) General recommendation. In: Proceedings of the first workshop on jute DUS testing, organized by Strengthening Seed Certification Agency Project, Seed Certification Agency, Gazipur held in Bangladesh Jute Research Institute, Dhaka

  19. Cooke RJ (1999) Modern methods for cultivar verification and the transgenic plant challenge. Seed Sci Technol 27:669–680

    Google Scholar 

  20. Nielsen G (1985) The use of isozymes as probes to identify and label plant varieties and cultivars, vol 12. Alan R. Liss, New York, pp 1–32

    Google Scholar 

  21. Joshi AB, Dhawan NL (1986) Genetic improvement of yield with special reference to self-fertilizing crops. Indian J Genet 26(1):101–113

    Google Scholar 

  22. Nevo E, Golenberg E, Beilies A, Brown AHD, Zohary D (1982) Genetic diversity and environmental association of wild wheat, Triticum diococcoides in Israel. Theor Appl Genet 62:241–254

    CAS  PubMed  Google Scholar 

  23. Deng LQ, Li JQ, Li AQ (1994) Studies on the agronomic characters of kenaf germplasm and their utilization. China’s Fibre Crops 4:1–4 (in Chinese)

    Google Scholar 

  24. Degani C, Rowland LJ, Levi A, Hortynski JA, Galletta GJ (1998) DNA fingerprinting of strawberry (Fragaria X ananassa) cultivars using randomly amplified polymorphic DNA (RAPD) markers. Euphytica 102:247–253

    Article  CAS  Google Scholar 

  25. Bowditch BM, Albright DG, Williams JGK, Braun MJ (1993) Use of randomly polymorphic DNA in comparative genome studies. Methods Genet Eng 224:294–309

    CAS  Google Scholar 

  26. Gupta PK, Balyan HS, Sharma PC, Ramesh B (1996) Microsatellites in plants: a new class of molecular markers. Curr Sci 70:45–54

    CAS  Google Scholar 

  27. Priolli RHG, Mendes-Junior CT, Arantes NE, Contel EPB (2002) Characterization of Brazilian soybean cultivars using microsatellite markers. Genet Mol Biol 25:185–193

    Article  Google Scholar 

  28. Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in Malus × domestica borkh. Core subset collection. Theor Appl Genet 97:671–683

    Article  CAS  Google Scholar 

  29. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Article  Google Scholar 

  30. Rajora OP, Rahman MH (2003) Microsatellite DNA and RAPD fingerprinting, identification and genetic relationships of hybrid poplar (Populus 3 canadensis) cultivars. Theor Appl Genet 106:470–477

    Article  CAS  PubMed  Google Scholar 

  31. Akter J, Islam MS, Sajib AA, Ashraf N, Haque S, Khan H (2008) Microsatellite markers for determining genetic identities and genetic diversity among jute cultivars. Aust J Crop Sci 1(3):97–107

    CAS  Google Scholar 

  32. Mir RR, Rustgi S, Sharma S, Singh R, Goyal A, Kumar J, Gaur A, Tyagi A, Khan H, Sinha MK, Balyan HS, Gupta PK (2008) A preliminary genetic analysis of fibre traits and the use of new genomic SSRs for genetic diversity in jute. Euphytica 161:413–427

    Article  CAS  Google Scholar 

  33. Hossain MB, Haque S, Khan H (2002) DNA fingerprinting of jute germplasm by RAPD. J Biochem Mol Biol 35:414–419

    CAS  PubMed  Google Scholar 

  34. Qi J, Zhou D, Wu W, Lin L, Fang P, Wu J (2003) The application of RAPD technology in genetic diversity detection of Jute. Ying Yon Sheng Tai XueBao 30:926–932

    CAS  Google Scholar 

  35. Haque S, Begum S, Sarker RH, Khan H (2007) Determining genetic diversity of some jute varieties and accessions using RAPD markers. Plant Tissue Cult Biotechnol 17(2):183–191

    Google Scholar 

  36. Roy A, Bandyopadhyay A, Mahapatra AK, Ghosh SK, Singh NK, Bansal KC, Koundal KR, Mohapatra T (2006) Evaluation of genetic diversity in jute (Corchorus species) using STMS, ISSR and RAPD markers. Plant Breed 125:292–297

    Article  CAS  Google Scholar 

  37. Qi J, Zhou D, Wu W, Lin L, Wu J, Fang P (2003) Application of ISSR technology in genetic diversity detection of jute. Ying Yong Sheng Tai XueBao 14:1473–1477

    CAS  Google Scholar 

  38. Hossain MH, Awal A, Rahman MA, Haque S, Khan H (2003) Distinction between cold sensitive and -tolerant jute by DNA polymorphisms. J Biochem Mol Biol 35(5):427–432

    Google Scholar 

  39. Huq S, Islam, Sajib AA, Ashraf N, Haque S, Khan H (2009) Genetic diversity and relationship: in jute (Corchorus sp.) revealed by SSR markers. Bangladesh J Bot 38(2):153–161

    Google Scholar 

  40. Mir RR, Banerjee S, Das M, Gupta V, Tyagi AK, Sinha MK, Balyan HS, Gupta PK (2009) Development and characterization of large scale simple sequence repeats in jute. Crop Sci 49:1687–1694

    Article  CAS  Google Scholar 

  41. Kundu Avijit, Sarkar Debabrata, Bhattacharjee Amit, Topdar Niladri, Sinha Mohit Kumar, Mahapatra Bikash Sinha (2011) A simple ethanol wash of the tissue homogenates recovers high-quality genomic DNA from Corchorus species characterized by highly acidic and proteinaceous mucilages. Electron J Biotechnol 14(15):1–8. doi:10.2225/vol14-issue1-fulltext-4

    Google Scholar 

  42. Sanguinetti CJ, Dias NE, Simpson AJG (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gel. Biotechniques 17:915–919

    Google Scholar 

  43. Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrell ME (1993) Optimizing parental selection for genetic linkage map. Genome 36:181–186

    Article  CAS  PubMed  Google Scholar 

  44. Das M, Banerjee S, Dhariwal R, Vyas S, Mir RR, Topdar N, Kundu A, Khurana JP, Tyagi AK, Sarkar D, Sinha MK, Balyan HS, Gupta PK (2012) Development of SSR markers and construction of a linkage map in jute. J Genet 91:1–11

    Article  Google Scholar 

  45. Cooper HD, Spillan EC, Hodgkin T (2001) Broadening the genetic base of crops: an overview. Broadening the genetic base of crop production. CAB International, Wallingford, pp 1–23

    Chapter  Google Scholar 

  46. Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Gen Genomics 270:315–323

    Article  CAS  Google Scholar 

  47. Holton TA, Christopher JT, McClure L, Harker N, Henry RJ (2002) Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Mol Breed 9:63–71

    Article  CAS  Google Scholar 

  48. Ghosh RK, Wongkaew A, Sreewongchai T, Nakasathien S, Phumichai C (2014) Assessment of genetic diversity and population Structure in jute (Corchorus spp.) using simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers. Nat Sci 48:83–94

    CAS  Google Scholar 

  49. Basu A, Ghosh M, Meyer R, Powell W, Basak SL, Sen SK (2004) Analysis of genetic diversity in cultivated jute determined by means of SSR markers and AFLP profiling. Crop Sci Soc Am 44:678–685

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors highly acknowledge Indian Council of Agriculture Research (ICAR), India for providing financial support and facility to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanti Meena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Meena, K., Sinha, M.K. et al. Genetic Diversity in Corchorus olitorius Genotypes Using Jute SSRs. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 87, 917–926 (2017). https://doi.org/10.1007/s40011-015-0652-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-015-0652-4

Keywords

Navigation