Biofilm Inhibitory Effect of Spirulina platensis Extracts on Bacteria of Clinical Significance

  • Felix LewisOscar
  • Chari Nithya
  • Dhamodharan Bakkiyaraj
  • Manivel Arunkumar
  • Naiyf S. Alharbi
  • Nooruddin ThajuddinEmail author
Research Article


Spirulina platensis is one of the most potential microalgae explored for antibacterial, antiviral and anti-cancerous properties. However, its antibiofilm potential has not been studied. Biofilms are of significant interest as they confer resistance towards antimicrobials and host immunity both in diverse group of bacteria. Exploring Spirulina towards the biofilm would give an easy way of treatment against bacterial pathogens. In this milieu, the antibiofilm potentials of organic extracts prepared from S. platensis was revealed. The results clearly showed that methanolic extract of S. platensis at a concentration of 100 ng mL−1 efficiently inhibited the biofilms of Vibrio parahaemolyticus (ATCC17802), Chromobacterium violaceum (ATCC 12742) and Vibrio alginolyticus (ATCC17749) about 90, 89 and 88 % respectively. Significant reduction in cell surface hydrophobicity was documented for Aeromonas hydrophila (MTCC1739), Escherichia coli (MTCC 739) and Staphylococcus aureus (MTCC 96 and 2940). Besides the inhibition of extracellular polymeric substances in A. hydrophila (MTCC1739) and S. aureus (MTCC2940) was about 88 and 71 % respectively. The availability of Spirulina as nutritious food makes it as a foremost contender against bacterial biofilm. The present study reveals the antibiofilm potential of S. platensis against a broad spectrum of both Gram Positive and Gram Negative bacteria. S. platensis effectively inhibited the biofilm of Vibro spp., a major menace in aquaculture industries. Further characterization and purification of the active compounds could be a major remedy against biofilm forming bacteria.


Biofilm S. platensis Antibiofilm Cell surface hydrophobicity Extracellular polymeric substances 



The authors gratefully acknowledge DBT (BT/PR4815/AAQ/3/587/2012 and BT/PR6619/PBD/26/310/2012) for providing financial support. They are grateful to Mr. S. Thangaprabhakaran, Bioelixer, Thanjavur, India, for providing the Spirulina powder for nutritional supplement to S. platensis culture. The Deanship of Scientific Research, College of Science Research Centre, King Saud University, Kingdom of Saudi Arabia has also supported the work. Clinical isolates of P. aeruginosa gifted by Prof. S. Karutha Pandian, Department of Biotechnology, Alagappa University, Karaikudi, India has been thankfully acknowledged. Financial support provided to Chari Nithya by Department of Science and Technology, Government of India in the form DST INSPIRE faculty Scheme is thankfully acknowledged (funded by DST, GOI; Grant No. DST/inspire Faculty Award/2012 [IFA12-LSPA13].

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G (1994) Biofilms, the customized micro niche. J Bacteriol 176:2137–2142CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wingender J, Strathmann M, Rode A, Leis A, Flemming HC (2001) Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa. Methods Enzymol 336:302–314CrossRefPubMedGoogle Scholar
  3. 3.
    Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487CrossRefPubMedGoogle Scholar
  4. 4.
    Kolenbrander PE, Palmer RJ Jr (2004) Human oral bacterial biofilms. In: Ghannoum MA, O’Toole GA (eds) Microbial biofilms. ASM Press, Washington, DCGoogle Scholar
  5. 5.
    Høiby N, Döring G, Schiøtz PO (1986) The role of immune complexes in the pathogenesis of bacterial infections. Annu Rev Microbiol 40:29–53CrossRefPubMedGoogle Scholar
  6. 6.
    Bjarnsholt T, Jensen PØ, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, Pressler T, Givskov M, Høiby N (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 44:547–558CrossRefPubMedGoogle Scholar
  7. 7.
    Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, Hayes J, Forbes M, Greenberg DP, Dice B, Burrows A, Wackym PA, Stoodley P, Post JC, Ehrlich GD, Kerschner JE (2006) Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 296:202–211CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dutta D, Cole N, Willcox M (2012) Factors influencing bacterial adhesion to contact lenses. Mol Vis 18:14–21PubMedPubMedCentralGoogle Scholar
  9. 9.
    Li YH, Tang N, Aspiras MB, Lau PCY, Lee JH, Ellen RP, Cvitkovitch DG (2002) A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 184:2699–2708CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Merritt J, Qi F, Goodman SD, Anderson MH, Shi W (2003) Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect Immun 71:1972–1979CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298CrossRefPubMedGoogle Scholar
  12. 12.
    Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M, Molin S, Eberl L (2001) The cep quorums ensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147:2517–2528CrossRefPubMedGoogle Scholar
  13. 13.
    Huber B, Riedel K, Köthe M, Givskov M, Molin S, Eberl L (2002) Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111. Mol Microbiol 46:411–426CrossRefPubMedGoogle Scholar
  14. 14.
    Yao W, Yue DI, Yong Z, Bo HY, Yu YB, Yun CS (2007) Effects of quorum sensing autoinducer degradation gene on virulence and biofilm formation of Pseudomonas aeruginosa. Sci China C 50:385–391CrossRefGoogle Scholar
  15. 15.
    Potera C (1999) Forging a link between biofilms and disease. Science 283:1837–1839CrossRefPubMedGoogle Scholar
  16. 16.
    Sakuragi Y, Kolter R (2007) Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol 189:5383–5386CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Romero M, Diggle SP, Heeb S, Cámara M, Otero A (2008) Quorum quenching activity in Anabaena sp. PCC 7120: identification of AiiC, a novel AHL-acylase. FEMS Microbiol Lett 280:73–80CrossRefPubMedGoogle Scholar
  18. 18.
    Dobretsov Teplitski M, Alagely A, Gunasekera SP, Paul VJ (2010) Malyngolide from the cyanobacterium Lyngbya majuscule interferes with quorum sensing circuitry. Sergey Environ Microbiol Rep 2(6):739–744CrossRefGoogle Scholar
  19. 19.
    Steinberg PD, De Nys R (2002) Chemical mediation of colonization of seaweed surfaces. J Phycol 38:621–629CrossRefGoogle Scholar
  20. 20.
    Limsuwan S, Voravuthikunchai SP (2008) Boesenbergia pandurata (Roxb.) Schltr., Eleutherine americana Merr. and Rhodomyrtus tomentosa (Aiton) Hassk. as antibiofilm producing and antiquorum sensing in Streptococcus pyogenes. FEMS Immunol Med Microbiol 5:429–436CrossRefGoogle Scholar
  21. 21.
    Nithya C, Begum MF, Pandian SK (2010) Marine bacterial isolates inhibit biofilm formation and disrupt mature biofilms of Pseudomonas aeruginosa PAO1. Microbiol Biotechnol 88:341–358CrossRefGoogle Scholar
  22. 22.
    Thenmozhi R, Nithyanand P, Rathna J, Pandian SK (2009) Antibiofilm activity of coral associated bacteria against different clinical M serotypes of Streptococcus pyogenes. FEMS Immunol Med Microbiol 57:284–294CrossRefPubMedGoogle Scholar
  23. 23.
    Vicente-García V, Ríos-Leal E, Calderón-Domínguez G, Cañizares-Villanueva RO, Olvera-Ramírez R (2004) Detection, isolation, and characterization of exopolysaccharide produced by a strain of Phormidium 94a isolated from an arid zone of Mexico. Biotechnol Bioeng 85(3):306–310CrossRefPubMedGoogle Scholar
  24. 24.
    Yoshikawa N, Belay A (2008) Single-laboratory validation of a method for the determination of c-phycocyanin and allophycocyanin in Spirulina (Arthrospira) supplements and raw materials by spectrophotometry. J AOAC Int 91(3):524–529PubMedGoogle Scholar
  25. 25.
    Villa J, Gemma C, Bachstetter A, Wang Y, Stromberg I, Bickford PC (2007) Spirulina, aging, and neurobiology. In: Gershwin ME, Belay A (eds) Spirulina in human nutrition and health. CRC Press, Taylor & Francis Group, Boca Raton, pp 271–291CrossRefGoogle Scholar
  26. 26.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322CrossRefPubMedGoogle Scholar
  27. 27.
    Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436(7054):1171–1175CrossRefPubMedGoogle Scholar
  28. 28.
    Padmavathi AR, Pandian SK (2014) Antibiofilm activity of biosurfactant producing coral associated bacteria isolated from Gulf of Mannar. Indian J Microbiol 54(4):376–382CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bakkiyaraj D, Rathna Nandhini J, Malathy B, Pandian SK (2013) The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling 29(8):929–937CrossRefPubMedGoogle Scholar
  30. 30.
    Castilloa S, Herediaa N, Arechiga-Carvajala E, García S (2014) Citrus extracts as inhibitors of quorum sensing. Biofilm Form Motil Campylobacter Jejuni Food Biotechnol 28:106–122Google Scholar
  31. 31.
    Nithya C, Devia MG, Pandiana SK (2011) A novel compound from the marine bacterium Bacillus pumilus S6-15 inhibits biofilm formation in gram-positive and gram-negative species. Biofouling 27(5):519–528CrossRefPubMedGoogle Scholar
  32. 32.
    Marshall KC (1992) Biofilms: an overview of bacterial adhesion, activity, and control at surfaces. ASM News 58:202–207Google Scholar
  33. 33.
    Nadell CD, Xavier JB, Levin SA, Foster KR (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6:e14CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Nithya C, LewisOscar F, Kanaga S, Kavitha R, Bakkiyaraj D, Arunkumar M, Alharbi NS, Chinnathambi A, Alharbi SA, Thajuddin N (2014) Biofilm inhibitory potential of Chlamydomonas sp. extract against Pseudomonas aeruginosa. J Algal Biomass Util 5(4):74–81Google Scholar
  35. 35.
    Gristina AG, Oga M, Webb LX, Hobgood CD (1985) Adherent bacterial colonization in the pathogenesis of osteomyelitis. Science 228:990–993CrossRefPubMedGoogle Scholar
  36. 36.
    Bruinsma GM, van der Mei HC, Busscher HJ (2001) Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials 22(24):3217–3224CrossRefPubMedGoogle Scholar
  37. 37.
    Liu H, Zhao Y, Zhao D, Gong G, Wu Y, Han H, Xu T, Peschel A, Han S, Qu D (2015) Antibacterial and anti-biofilm activities of thiazolidione derivatives against clinical Staphylococcus strains. Emerg Microbes Infect. doi: 10.1038/emi.2015.1 Google Scholar

Copyright information

© The National Academy of Sciences, India 2015

Authors and Affiliations

  • Felix LewisOscar
    • 1
  • Chari Nithya
    • 1
  • Dhamodharan Bakkiyaraj
    • 1
  • Manivel Arunkumar
    • 1
  • Naiyf S. Alharbi
    • 2
  • Nooruddin Thajuddin
    • 1
    • 2
    Email author
  1. 1.Division of Microbial Biodiversity and Bioenergy, Department of Microbiology, School of Life SciencesBharathidasan UniversityTiruchirappalliIndia
  2. 2.Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations