Skip to main content
Log in

Identifying microRNAs relating to morphine response in BE(2)-C cell line by microRNA profiling

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) serve as critical modulators of post transcriptional gene regulation in response to stimuli such as narcotics. Hence, the analysis of miRNA expression may elucidate the molecular mechanisms underlying cellular response to morphine. Here, the expression profile of 750 known miRNAs was generated in BE (2)-C neuroblastoma cell line by using the miRCURY LNA microRNA qPCR array system, in order to identify morphine responsive miRNAs. This population of miRNAs can be used potentially to provide an insight into the functional mechanisms of this drug. Bioinformatics analysis was used to predict the target genes of morphine responsive miRNAs, and the altered expression of selected targets was investigated through quantitative polymerase chain reaction. The result showed that a total of 10 miRNAs were up-regulated, while 33 miRNAs were down-regulated in response to morphine treatment, considering at least 1.75 fold change in expression between treated and untreated cells. Among them, hsa-miR-29a-5p, has-miR-646, has-miR-1539, has-miR-412 and has-miR-937 showed the largest changes in expression level. Furthermore, the effect of multiple morphine responsive miRNAs on one target gene (cooperativity) was considered as the criterion to select target genes for the validation analysis. Cnr1, Jazf1, Nr2c2, Lonrf2, Bnc2, C1orf21 and eight more genes were selected based on cooperativity, and validated by using real time polymerase chain reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Spanagel R, Heilig M (2005) Addiction and its brain science. Addiction 100(12):1813–1822

    Article  PubMed  Google Scholar 

  2. Agrawal A, Lynskey MT (2008) Are there genetic influences on addiction: evidence from family, adoption and twin studies. Addiction 103(7):1069–1081

    Article  PubMed  Google Scholar 

  3. Ammon-Treiber S, Höllt V (2005) Morphine-induced Changes of Gene Expression in the Brain. Addict Biol 10(1):81–89

    Article  CAS  PubMed  Google Scholar 

  4. Shi J, Hui L, Xu Y, Wang F, Huang W, Hu G (2002) Sequence variations in the mu-opioid receptor gene (OPRM1) associated with human addiction to heroin. Hum Mutat 19(4):459–460

    Article  PubMed  Google Scholar 

  5. Standifer KM, Cheng J, Brooks AI, Honrado CP, Su W, Visconti LM, Biedler JL, Pasternak GW (1994) Biochemical and pharmacological characterization of mu, delta and kappa 3 opioid receptors expressed in BE (2)-C neuroblastoma cells. J Pharmacol Exp Ther 270(3):1246–1255

    CAS  PubMed  Google Scholar 

  6. Bergeson SE, Helms ML, O’Toole LA, Jarvis MW, Hain HS, Mogil JS, Belknap JK (2001) Quantitative trait loci influencing morphine antinociception in four mapping populations. Mamm Genome 12(7):546–553

    Article  CAS  PubMed  Google Scholar 

  7. Kreek MJ, Zhou Y, Butelman ER, Levran O (2009) Opiate and cocaine addiction: from bench to clinic and back to the bench. Curr Opin Pharmacol 9(1):74–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang J, Yuan W, Li MD (2011) Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: a review of proteomics analyses. Mol Neurobiol 44(3):269–286

    Article  CAS  PubMed  Google Scholar 

  9. Piechota M, Korostynski M, Sikora M, Golda S, Dzbek J, Przewlocki R (2012) Common transcriptional effects in the mouse striatum following chronic treatment with heroin and methamphetamine. Genes, Brain Behav 11(4):404–414

    Article  CAS  Google Scholar 

  10. Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18(5):504–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Babashah S, Sadeghizadeh M, Tavirani MR, Farivar S, Soleimani M (2012) Aberrant microRNA expression and its implications in the pathogenesis of leukemias. Cell Oncol 35(5):317–334

    Article  CAS  Google Scholar 

  12. Hausser J, Landthaler M, Jaskiewicz L, Gaidatzis D, Zavolan M (2009) Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C–miRNA complexes and the degradation of miRNA targets. Genome Res. doi:10.1101/gr.091181.109

    PubMed  PubMed Central  Google Scholar 

  13. Miska EA (2005) How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 15(5):563–568

    Article  CAS  PubMed  Google Scholar 

  14. Fiore R, Siegel G, Schratt G (2008) MicroRNA function in neuronal development, plasticity and disease. Biochim et Biophys Acta (BBA)-Gene Regul Mech 1779(8):471–478

    Article  CAS  Google Scholar 

  15. Saba R, Schratt GM (2010) MicroRNAs in neuronal development, function and dysfunction. Brain Res 1338:3–13

    Article  CAS  PubMed  Google Scholar 

  16. Thomas M, Kalivas P, Shaham Y (2008) Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br J Pharmacol 154(2):327–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chandrasekar V, Dreyer J-L (2009) microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Mol Cell Neurosci 42(4):350–362

    Article  CAS  PubMed  Google Scholar 

  18. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1):55–63

    Article  CAS  PubMed  Google Scholar 

  19. Soong R, Ruschoff J, Tabiti K (2000) Detection of colorectal micrometastasis by quantitative RT-PCR of cytokeratin 20 mRNA. Roche Diagnostics internal publication, Lewes

    Google Scholar 

  20. Čikoš Š, Bukovská A, Koppel J (2007) Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis. BMC Mol Biol 8(1):113

    Article  PubMed  PubMed Central  Google Scholar 

  21. Karlen Y, McNair A, Perseguers S, Mazza C, Mermod N (2007) Statistical significance of quantitative PCR. BMC Bioinform 8(1):131

    Article  Google Scholar 

  22. Dweep H, Sticht C, Pandey P, Gretz N (2011) miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44(5):839–847

    Article  CAS  PubMed  Google Scholar 

  23. Wood EJ, Lipovich L (2012) MicroRNAs in opioid addiction: elucidating evolution. Front Genet. doi:10.3389/fgene.2012.00241

    PubMed  PubMed Central  Google Scholar 

  24. Renthal W, Nestler EJ (2009) Chromatin regulation in drug addiction and depression. Dialogues Clin Neurosci 11(3):257

    PubMed  PubMed Central  Google Scholar 

  25. Nguyen T, Kuo C, Nicholl MB, Sim M-S, Turner RR, Morton DL, Hoon D (2011) Downregulation of microRNA-29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma. Epigenetics 6(3):388–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Papadopoulos GL, Alexiou P, Maragkakis M, Reczko M, Hatzigeorgiou AG (2009) DIANA-mirPath: integrating human and mouse microRNAs in pathways. Bioinformatics 25(15):1991–1993

    Article  CAS  PubMed  Google Scholar 

  27. Li C-Y, Mao X, Wei L (2008) Genes and (common) pathways underlying drug addiction. PLoS Comput Biol 4(1):e2

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mitra R, Bandyopadhyay S (2011) MultiMiTar: a novel multi objective optimization based miRNA-target prediction method. PLoS ONE 6(9):e24583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brown JR, Sanseau P (2005) A computational view of microRNAs and their targets. Drug Discov Today 10(8):595–601

    Article  CAS  PubMed  Google Scholar 

  30. Zhou Y, Ferguson J, Chang JT, Kluger Y (2007) Inter-and intra-combinatorial regulation by transcription factors and microRNAs. BMC Genom 8(1):396

    Article  Google Scholar 

  31. Kuhn DE, Martin MM, Feldman DS, Terry AV Jr, Nuovo GJ, Elton TS (2008) Experimental validation of miRNA targets. Methods 44(1):47–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakajima T, Fujino S, Nakanishi G, Kim Y-S, Jetten AM (2004) TIP27: a novel repressor of the nuclear orphan receptor TAK1/TR4. Nucleic Acids Res 32(14):4194–4204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Tarbiat Modares University. The morphine used in the study was kindly provided by Health Ministry of Iran. The authors are deeply grateful to Babak Bakhshinejad for kindly reviewing the manuscript. The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Sadeghizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sistani, R.N., Soltani, B.M. & Sadeghizadeh, M. Identifying microRNAs relating to morphine response in BE(2)-C cell line by microRNA profiling. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 87, 299–305 (2017). https://doi.org/10.1007/s40011-015-0614-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-015-0614-x

Keywords

Navigation