Skip to main content

Advertisement

Log in

In Silico Characterization of Novel Chikungunya Non-Structural Protein 2 Target Peptides

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Chikungunya is one of the most prevailing epidemics all over the world and the viral non-structural protein 2 (nsP2) plays a significant role in pathogenesis associated with this infection. The Chikungunya viral nsP2 induces a transcriptional shut off that suppresses the host cellular antiviral responses. However, the understanding about Chikungunya viral pathogenic proteins is still in its infancy and a specific drug for the disease has not yet been developed. This work attempts to hypothesise the novel drug target peptides associated with Chikungunya viral nsP2, at sequence level. In the present study the Chikungunya viral strains have clustered into five separate groups based on the viral strain lineage. By constructing a global nsP2 sequence from the nsP2 consensus sequences, the conservation variation analysis is performed. These conserved peptides were elicited and tested for its drug target properties. This study strongly suggests the applicability of the derived drug target peptides for the development of effective drugs for the treatment of Chikungunya infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Volk SM, Chen R, Tsetsarkin KA, Paige Adams A, Garcia TI, Sall AA, Nasar F, Schuh AJ, Holmes EC, Higgs S, Maharaj PD, Brault AC, Weaver SC (2010) Genome-scale phylogenetic analyses of chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. J Virol 84(13):6497–6504. doi:10.1128/JVI.01603-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chhabra M, Mittal V, Bhattacharya D, Rana U, Lal S (2008) Chikungunya fever: a re-emerging viral infection. Indian J Med Microbiol 26(1):5–12

    Article  CAS  PubMed  Google Scholar 

  3. Pongsumpun P (2010) Dynamical transmission model of Chikungunya in Thailand. World Acad Sci Eng Technol 44:1171–1175

    Google Scholar 

  4. Francesca C, Paolo G, Anna MP, Giada R, Maria PL, Vittorio S (2009) Chikungunya: an emerging and spreading arthropod-borne viral disease. J Infect Dev Ctries 3(10):744–752

    Google Scholar 

  5. Sathya PM, Attayur PS, Subhodh KR, Paluru V, Ananganallur NS, Sameer S, Nagarajan M, Itta KC, Dev RG, Anakkathil BS (2010) Outbreak of chikungunya fever, Dakshina Kannada District, South India, 2008. Am J Trop Med Hyg 83(4):751–754

    Article  Google Scholar 

  6. Arvind J, Ashok S, Maniram K, Naveen P, Sachin J (2007) Chikungunya fever. J Indian Acad Clin Med 8(2):164–168

    Google Scholar 

  7. Powers AM, Logue CH (2007) Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol 88(9):2363–2377

    Article  CAS  PubMed  Google Scholar 

  8. Bouraï M, Lucas-Hourani M, Gad HH, Drosten C, Jacob Y, Tafforeau L, Cassonnet P, Jones LM, Judith D, Couderc T, Lecuit M, André P, Kümmerer BM, Lotteau V, Desprès P, Tangy F, Vidalain PO (2012) Mapping of chikungunya virus interactions with host proteins identified nsP2 as a highly connected viral component. J Virol 86(6):3121–3134

    Article  PubMed  PubMed Central  Google Scholar 

  9. Judith D, Mostowy S, Bourai M, Gangneux N, Lelek M, Lucas-Hourani M, Cayet N, Jacob Y, Prévost MC, Pierre P, Tangy F, Zimmer C, Vidalain PO, Couderc T, Lecuit M (2013) Species-specific impact of the autophagy machinery on chikungunya virus infection. Eur Mol Biol Organ Rep 4(6):534–544

    Google Scholar 

  10. Khan AH, Morita K, Parquet MdMdel C, Hasebe F, Mathenge EG, Igarashi A (2003) Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J Gen Virol 83(12):3075–3084

    Article  Google Scholar 

  11. Fros JJ, Liu WJ, Prow NA, Geertsema C, Ligtenberg M, Vanlandingham DL, Schnettler E, Vlak JM, Suhrbier A, Khromykh AA, Pijlman GP (2010) Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling. J Virol 84(20):10877–10887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singh K, Kirubakaran P, Nagarajan S, Sakkiah S, Muthusamy K, Velmurgan D, Jeyakanthan J (2012) Homology modeling, molecular dynamics, e-pharmacophore mapping and docking study of chikungunya virus nsP2 protease. J Mol Model 18(1):39–51

    Article  PubMed  Google Scholar 

  13. Krishnan A, Li K-B, Issac P (2004) Rapid detection of conserved regions in protein sequences using wavelets. Silico Biol 4(2):133–148

    CAS  Google Scholar 

  14. Fang Z, Du R, Edwards A, Flemington EK, Zhang K (2013) The sequence structures of human microRNA molecules and their implications. PLoS ONE 8(1):e54215. doi:10.1371/journal.pone.0054215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang EY, DeLisi C (2006) Inferring protein–protein interactions in viral proteins by co-evolution of conserved side chains. Genome Inform 17(1):23–35

    CAS  PubMed  Google Scholar 

  16. De Groot AS, Jesdale B, Martin W, Saint AC, Sbai H, Bosma A, Lieberman J, Skowron G, Mansourati F, Mayer KH (2003) Mapping cross-clade HIV-1 vaccine epitopes using a bioinformatics approach. Vaccine 21(27–30):4486–4505

    PubMed  Google Scholar 

  17. Wilson CC, McKinney D, Anders M, MaWhinney S, Forster J, Crimi C, Southwood S, Sette A, Chesnut R, Newman MJ, Livingston BD (2003) Development of a DNA vaccine designed to induce cytotoxic T lymphocyte responses to multiple conserved epitopes in HIV-1. J Immunol 171(10):5611–5623

    Article  CAS  PubMed  Google Scholar 

  18. Xie PW, Xie Y, Zhang XJ, Huang H, He LN, Wang XJ, Wang SQ (2013) Inhibition of Dengue virus 2 replication by artificial microRNAs targeting the conserved regions. Nucleic Acid Ther 23(4):244–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De DW, Yonghui Z, Qiong Z, Jing K, Wenjia L, Huan Z, Corina M, Qiaoli Z, Wenjie L, Haojie Z, Jianfeng H, Hui L, Songwu C, Changwen K, Jinyan L (2013) Chikungunya virus with E1-A226V mutation causing two outbreaks in 2010, Guangdong, China. Virol J 10:174. doi:10.1186/1743-422X-10-174

  20. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. doi:10.1093/molbev/msr121

    Google Scholar 

  21. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16(6):276–277

    Article  CAS  PubMed  Google Scholar 

  22. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31(13):3784–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and clustalX version 2. Bioinformatics 23(21):2947–2948

    Article  CAS  PubMed  Google Scholar 

  24. http://coot.embl.de/Alignment/consensus.html

  25. Mullan LJ, Bleasby AJ (2002) Short EMBOSS user guide. Eur Mol Biol Open Softw Suite Brief Bioinform 3(1):92–94

    Google Scholar 

  26. Bakheet TM, Doig AJ (2009) Properties and identification of human protein drug targets. Bioinformatics 25(4):451–457

    Article  CAS  PubMed  Google Scholar 

  27. SobiaIdrees UAA, Idrees N (2013) Development of global consensus sequence of HCV glycoproteins involved in viral entry. Theor Biol Med Model 10:24. doi:10.1186/1742-4682-10-24

    Article  Google Scholar 

  28. Qingliang L, Luhua L (2007) Prediction of potential drug targets based on simple sequence properties. BMC Bioinform 8(353). doi:10.1186/1471-2105-8-353

  29. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1(9):727–730

    Article  CAS  PubMed  Google Scholar 

  30. http://www.ncbi.nlm.nih.gov/

  31. Niyas KP, Abraham R, Unnikrishnan RN, Mathew T, Nair S, Manakkadan A, Issac A, Sreekumar E (2010) Molecular characterization of Chikungunya virus isolates from clinical samples and adult Aedes albopictus mosquitoes emerged from larvae from Kerala, South India. Virol J 7:189. doi:10.1186/1743-422X-7-189

    Article  PubMed  PubMed Central  Google Scholar 

  32. https://www.predictprotein.org

  33. Petersen B, Petersen TN, Andersen P, Nielsen M, Lundegaard C (2009) A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Struct Biol 9:51. doi:10.1186/1472-6807-9-51

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The corresponding author acknowledges the funding from Kerala State IT Mission, Govt. of Kerala for the SPEED-IT (Special Postgraduate Education Expansion Drive in IT) Fellowship.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Vidhya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidhya, R.V., Nair, A.S. & Dhar, P.K. In Silico Characterization of Novel Chikungunya Non-Structural Protein 2 Target Peptides. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 86, 441–453 (2016). https://doi.org/10.1007/s40011-014-0466-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-014-0466-9

Keywords

Navigation