Skip to main content
Log in

Association Analysis for Vegetative Propagation Traits in Eucalyptus tereticornis and Eucalyptus camaldulensis Using Simple Sequence Repeat Markers

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Eucalyptus, one of the most widely planted forestry species, is an introduced species to India which is mainly exploited for its pulpwood. Presently, the largest clonal forestry programs are in practice with species of Eucalyptus and the variable rooting potential among the selections are considered to be a hindrance to the success of clonal propagation. Many breeding programs target intra- and inter-specific hybridization for the transfer of vegetative propagation traits and hence SSR markers linked with vegetative propagation traits gained importance for practicing marker assisted selection. Eucalyptus species show high synteny and marker correspondence across genome of different species favoring use of simple sequence repeats (SSRs) linked to quantitative trait loci (QTLs) for association analysis. In this study, 43 accessions of E. tereticornis and 40 accessions of E. camaldulensis were examined for their rooting parameters and subjected to association analysis. The rooting percentage of Eucalyptus accessions showed continuous variation (0–100 %). Association analysis with 62 loci showed that two SSR loci (Embra40 and Embra7) were associated with rooting and mortality percent and shoot length in E. tereticornis. Two SSR loci (Embra167 and Embra39) were associated with shoot length and root length in E. camaldulensis. This study validated the presence of generic genomic regions through SSR markers, which enabled the identification of orthologous QTL regions for vegetative propagation properties in E. tereticornis and E. camaldulensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Varghese M, Harwood CE, Hegde R, Ravi N (2008) Evaluation of provenances of Eucalyptus camaldulensis and clones of E. camaldulensis and E. tereticornis at contrasting sites in Southern India. Silvae Genet 57:170–179

    Google Scholar 

  2. Varghese M, Kamalakannan R, Harwood CE, Lindgren D, McDonald MW (2009) Changes in growth performance and fecundity of Eucalyptus camaldulensis and E.tereticornis during domestication in southern India. Tree Genet Genomes 5:629–640

    Article  Google Scholar 

  3. Borralho NMG, Wilson Ph (1994) Inheritance of initial survival and rooting ability in Eucalyptus globulus Labill. stem cuttings. Silvae Genet 43:238–242

    Google Scholar 

  4. Lemos L, Carvalho A, Araújo JA, Borralho NMG (1998) Importance of additive and specific combining ability effects for rooting ability of stem cuttings in Eucalyptus globulus. Silvae Genet 46:307–308

    Google Scholar 

  5. Shepherd M, Pomroy P, Dieters MJ, Lee DJ (2007) Genetic control of propagation traits in a single Corymbia torelliana × C. citriodora spp variegata family. Can J For Res 37:2563–2574

    Article  Google Scholar 

  6. Grattapaglia D, Bertolucci FL, Sederoff RR (1995) Genetic mapping of QTLs controlling vegetative propagation in Eucalyptus grandis and E. urophylla using a pseudo-testcross strategy and RAPD markers. Theor Appl Genet 90:933–947

    Article  CAS  PubMed  Google Scholar 

  7. Marques CM, Vasquez-Kool J, Carocha VJ, Ferreira JG, O’Malley DM, Liu B-H, Sederoff R (1999) Genetic dissection of vegetative propagation traits in Eucalyptus tereticornis and E. globulus. Theor Appl Genet 99:936–946

    Article  Google Scholar 

  8. Marques CM, Carocha VJ, de Sa ARP, Oliveira MR, Pires AM, Sederoff R, Borralho NMG (2005) Verification of QTL linked markers for propagation traits in Eucalyptus. Tree Genet Genomes 1:103–108

    Article  Google Scholar 

  9. Marques CM, Brondani RPV, Grattapaglia D, Sederoff R (2002) Conservation and synteny of SSR loci and QTLs for vegetative propagation in four Eucalyptus species. Theor Appl Genet 105:474–478

    Article  CAS  PubMed  Google Scholar 

  10. Shepherd M, Kasem S, Lee D, Henry R (2008) Mapping species differences for adventitious rooting in a Corymbia torelliana × C. citriodora subspecies variegata hybrid. Tree Genet Genomes 4:715–725

    Article  Google Scholar 

  11. Shepherd M, Dieters MJ, Baltunis BS (2009) Genetic control and architecture of adventitious rooting in forest trees. In: Niemi K, Scagel C (eds) Adventitious root formation of forest trees and horticultural woody plant—from genes to applications. Research Signpost, Kerala, pp 51–84

    Google Scholar 

  12. Thumma BR, Southerton SG, Bell JC, Owen JV, Henery ML, Moran GF (2010) Quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens. Tree Genet Genomes 6:305–317

    Article  Google Scholar 

  13. Khan MA, Korban SS (2012) Association mapping in forest trees and fruit crops. J Exp Bot 63:4045–4060

    Article  CAS  PubMed  Google Scholar 

  14. Morrell PL, Buckler ES, Ross-Ibarra J (2011) Crop genomics: advances and applications. Nat Rev Genet 13:85–96

    PubMed  Google Scholar 

  15. Du Q, Gong C, Pan W, Zhang D (2013) Development and application of microsatellites in candidate genes related to wood properties in the Chinese white poplar (Populus tomentosa Carr.). DNA Res 20:31–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Picañol R, Eduardo I, Aranzana MJ, Howad W, Batlle I, Iglesias I, Alonso JM, Arús P (2013) Combining linkage and association mapping to search for markers linked to the flat fruit character in peach. Euphytica 190:279–288

    Article  Google Scholar 

  17. Freeman JS, O’Reilly-Wapstra M, Vaillancourt RE, Wiggins N, Potts BM (2008) Quantitative trait loci for key defensive compounds affecting herbivory of eucalypts in Australia. New Phytol 178:846–851

    Article  CAS  PubMed  Google Scholar 

  18. Rosado TB, Tomaz RS, Junior MFR, Rosado AM, Guimarães LMS, Araújo EF, Alfenas AC, Cruz CD (2010) Detection of QTL associated with rust resistance using IBD-based methodologies in exogamic Eucalyptus spp. Populations. Crop Breed App Biot 10:321–328

    Article  Google Scholar 

  19. Alves A, Rosado C, Faria D, Guimarães L, Lau D, Brommonschenkel S, Grattapaglia D, Alfenas A (2012) Genetic mapping provides evidence for the role of additive and non-additive QTLs in the response of inter-specific hybrids of Eucalyptus to Puccinia psidii rust infection. Euphytica 183:27–38

    Article  CAS  Google Scholar 

  20. Arumugasundaram S, Ghosh M, Veerasamy S, Ramasamy Y (2011) Species Discrimination, Population Structure and Linkage Disequilibrium in Eucalyptus camaldulensis and Eucalyptus tereticornis Using SSR Markers. PLoS One 6(12):e28252. doi:10.1371/journal.pone.0028252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Vivekanandan K, Gurumurthi K, Jayaraj RSC (1997) Clonal multiplication of eucalypts. IFGTB/97/001 Field Document No.1, 65 pages

  22. Brondani RPV, Williams ER, Brondani C, Grattapaglia D (2006) A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC Plant Biol 6:1–16

    Article  Google Scholar 

  23. Thamarus K, Groom K, Murrell J, Byrne M, Moran G (2002) A genetic linkage map for Eucalyptus globulus with candidate loci for wood, fibre and floral traits. Theor Appl Genet 104:379–387

    Article  CAS  PubMed  Google Scholar 

  24. Yasodha R, Sumathi R, Chezhian P, Kavitha P, Ghosh M (2008) Eucalyptus microsatellites mined in silico: survey and evaluation. J Genet 87:21–25

    Article  CAS  PubMed  Google Scholar 

  25. Grattapaglia D, Vaillancourt R, Shepherd M, Thumma B, Foley W, Külheim C, Potts B, Myburg A (2012) Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet Genomes 8:463–508

    Article  Google Scholar 

  26. Mamani EMC, Bueno NW, Faria DA, Guimarães LMS, Lau D, Alfenas ACA, Grattapaglia D (2010) Positioning of the major locus for Puccinia psidii rust resistance (Ppr1) on the Eucalyptus reference map and its validation across unrelated pedigrees. Tree Genet Genomes 6:953–962

    Article  Google Scholar 

  27. Freeman JS, Whittock SP, Potts BM, Vaillancourt RE (2009) QTL influencing growth and wood properties in Eucalyptus globulus. Tree Genet Genomes 5:713–722

    Article  Google Scholar 

  28. Thumma BR, Baltunis BS, Bell JC, Emebiri LC, Moran GF et al (2010) Quantitative trait locus (QTL) analysis of growth and vegetative propagation traits in Eucalyptus nitens full-sib families. Tree Genet Genomes 6:877–889

    Article  Google Scholar 

  29. Thavamanikumar S, Southerton SG, Bossinger G, Thumma BR (2013) Dissection of complex traits in forest trees—opportunities for marker-assisted selection. Tree Genet Genomes 9:627–639

    Article  Google Scholar 

  30. Thumma BR, Matheson BA, Zhang DQ, Meeske C, Meder R, Downes GM, Southerton SG (2009) Identification of a cis-acting regulatory polymorphism in a eucalypt cobra-like gene affecting cellulose content. Genetics 183:1153–1164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The first author acknowledges the Senior Research Fellowship from the Indian Council of Forestry Research & Education (ICFRE), Dehradun, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramasamy Yasodha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmugapriya, A., Bachpai, V.K.W., Ganesan, M. et al. Association Analysis for Vegetative Propagation Traits in Eucalyptus tereticornis and Eucalyptus camaldulensis Using Simple Sequence Repeat Markers. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 85, 653–658 (2015). https://doi.org/10.1007/s40011-014-0360-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-014-0360-5

Keywords

Navigation