Ameliorative Effect of Selenium on Enrofloxacin-Induced Lipid Peroxidation and Antioxidant Imbalance


Fluoroquinolones are a very important class of antimicrobials used in veterinary practice now a days. Current study was designed to evaluate the ameliorative effect of selenium on the enrofloxacin induced alterations in the antioxidant status of rat. The rats were divided into five groups of eight each. Group I served as control. Two groups were administered enrofloxacin at the dose rate of 20 and 80 mg/kg body weight, respectively for 21 days and other two groups were co-administered with organic selenium at supra nutritional level in the feed and gavaged enrofloxacin at the dose rate of 20 and 80 mg/kg body weight, respectively for 21 days. Enrofloxacin administration resulted in a marked alteration in antioxidant status in the blood of rats. There was a significant increase in the extent of lipid peroxidation but the extent of lipid peroxidation was lesser in the selenium supplemented groups. The activity of antioxidant enzymes viz. glutathione peroxidase, superoxide dismutase and catalase was significantly decreased in a dose-dependent manner. The altered activities of the enzymes were improved with selenium supplementation. The results from the current study indicate that enrofloxacin administration for 21 days results in an altered antioxidant status in rats and induces a dose-dependent lipid peroxidation. These alterations were prevented by simultaneous exposure of selenium in the diet.

This is a preview of subscription content, access via your institution.


  1. 1.

    Randall C, Walker MD (1999) The fluoroquinolones. Mayo Clin Proc 74:1030–1037

    Article  Google Scholar 

  2. 2.

    Dowers KL, Tasker S, Radecki VS, Lappin MR (2009) Use of pradofloxacin to treat experimentally induced Mycoplasma hemofelis infection in cats. Am J Vet Res 70:105–111

    PubMed  Article  Google Scholar 

  3. 3.

    Elmas M, Tiras B, Kaya S, Bas AL, Yazar E, Yarsan E (2001) Pharmacokinetics of enrofloxacin after intravenous and intramuscular administration in angora goats. Can J Vet Res 65(1):64–67

    PubMed  CAS  PubMed Central  Google Scholar 

  4. 4.

    Mitchell MA (2006) Therapuetic review enrofloxacin. J Exot Pet Med 15(1):66–69

    Article  Google Scholar 

  5. 5.

    Ibrahim IG, Yarsan E (2011) Enrofloxacin drug induced reactive oxygen species. Res Opin Anim Vet Sci 1(8):489–491

    Google Scholar 

  6. 6.

    Jo J (2005) Overexpression of a eukaryotic glutathione reductase gene from Brassica campestris improved resistance to oxidative stress in Escherichia coli. Biochem Biophys Res Commun 326(3):618–623

    PubMed  Article  Google Scholar 

  7. 7.

    Mohr JFA (2005) Retrospective, comparative evaluation of dysglycemias in hospitilised patients receiving gatifloxacin, levofloxacin ciprofloxacin, orceftriaxone. Pharmacotherapy 25(10):1303–1309

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Park-Wyllie LY, Juurlink DN, Kopp A, Shah BR, Stukel TA, Stumpo C, Dresser L, Low DE, Mamdabni MM (2006) Outpatient gatifloxacin therapy and dysglycemia in older adults. N Engl J Med 354(13):1352–1360

    Google Scholar 

  9. 9.

    Rampal S, Kaur R, Sethi R, Singh O, Sood N (2008) Ofloxacin-associated retinopathy in rabbits: role of oxidative stress. Hum Exp Toxicol 27(5):409–415

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Zhao B, Chignell CF, Rammal M, Smith F, Hamilton MG, Andley UP, Roberts JE (2010) Detection and prevention of ocular phototoxicity of ciprofloxacin and other fluoroquinolone antibiotics. J Photochem Photobiol B 86(4):798–805

    Article  CAS  Google Scholar 

  11. 11.

    Etminan M, Forooghian F, Brophy JM, Bird ST, Maberley D (2012) Oral fluoroquinolones and the risk of retinal detachment. JAMA 307(13):1414–1419

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Takhshid MA, Tavasuli RA, Heidary Y, Keshavarz M, Kargar H (2012) Protective effect of Vitamins E and C on endosulfan-induced reproductive toxicity in male rats. Indian J Med Sci 37(3):173–180

    Google Scholar 

  13. 13.

    Talla V, Veerareddy PR (2011) Oxidative stress induced by fluoroquinolones on treatment for complicated urinary tract infections in Indian patients. J Young Pharm 3:304–309

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  14. 14.

    Hayem G, Petit PX, Levacher M, Gaudhin C, Kahn MF, Pocidalo JJ (1994) Cytofluorometric analysis of chondrotoxicity of fluoroquinolone antimicrobial agents. AAC 38:243–247

    Article  CAS  Google Scholar 

  15. 15.

    Pouzaud F, Benard-Beaubois K, Warnet JM, Havem G, Rat P (2004) In vitro discrimination of fluoroquinolones toxicity on tendon cells: involvement of oxidative stress. J Pharmacol Exp Ther 308:394–402

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Gurbay A, Gonthier B, Signorini-Allibe N, Barret L, Favier A, Hincal F (2006) Ciprofloxacin-induced DNA damage in primary culture of rat astrocytes and protection by Vit. E. Neurotoxicology 27:6–10

    PubMed  Article  Google Scholar 

  17. 17.

    Yousef MI (2010) Vitamin E modulates reproductive toxicity of pyrethroid lambda-cyhalothrin in male rabbits. Food Chem Toxicol 48:1152–1159

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Piršljin J, Milinković Tur S, Zdelar-Tuk M, Beer-Ljubić B, Stojević Z, Gradinski-Vrbanac B (2006) Effect of fasting and refeeding on blood glutathione and lipid peroxide concentration of cockerels and pullets. Dtsch Tierärztl Wochenschr 113:453–457

  19. 19.

    Surai PF (2002) Selenium in poultry nutrition part I. Antioxidant properties, deficiency and toxicity. World Poult Sci J 58:333–347

    Article  Google Scholar 

  20. 20.

    Schrauzer GN (2000) Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J Nutr 130:1653–1656

    PubMed  CAS  Google Scholar 

  21. 21.

    Randjelovic P, Veljkovic S, Stojiljkovic N, Velickovic L, Sokolovic D, Stoiljkovic M, Ilic I (2012) Protective effect of selenium on gentamicin-induced oxidative stress and nephrotoxicity in rats. Drug Chem Toxicol 35(2):141–148. doi:10.3109/01480545.2011.589446. Epub 2011 Nov 18

  22. 22.

    Xia L, Nordman T, Olsson JM, Damdimopoulos A, Bjorkhem- Bergman L, Nalvarte I et al (2003) The mammalian selenoenzyme thioredoxin reductase reduces ubiquinone. A novel mechanism for defense against oxidative stress. J Biol Chem 278:2141–2146

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Adamcak A, Otten B (2000) Rodent therapeutics. Vet Clin North Am Exot Anim Pract 3(1):221–237, viii

  24. 24.

    Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    PubMed  CAS  Google Scholar 

  25. 25.

    Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Aebi HE (1983) Catalase. In: Bergmeyer HO (ed) Methods of enzymatic analysis, vol ΙΙΙ. Academic press, New York, pp 273–386

    Google Scholar 

  27. 27.

    Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferase: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  28. 28.

    Hafeman DG, Sunde RA, Hoekstra WG (1974) Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J Nutr 104:580–587

    PubMed  CAS  Google Scholar 

  29. 29.

    Rehman SU (1984) Lead-induced regional lipid peroxidation in brain. Toxicol Lett 21:333–337

    Google Scholar 

  30. 30.

    Singh S, Bansal ML, Singh TP, Kumar P (1991) Statistical methods for research workers. Kalyani Publishers, New Delhi

    Google Scholar 

  31. 31.

    Fatma A (2005) Civcivlerde bazı kinolon grubu antibiyotiklerin katalaz aktivitesi ve malondialdehit düzeyi üzerine etkisi. AÜ Sağ Bi Derg 14:135–150

    Google Scholar 

  32. 32.

    Dubey N, Raina R, Khan AM (2012) Toxic effects of deltamethrin and fluoride on antioxidant parameters in rats. Fluoride 45:242–246

    Google Scholar 

  33. 33.

    McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprien). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  34. 34.

    Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Kirshenbaum L, Singal P (1993) Increase in endogenous antioxidant enzymes protects the heart against reperfusion injury. Am J Physiol 265:H484–H493

    PubMed  CAS  Google Scholar 

  36. 36.

    Eraslan G, Saygi S, Essiz D, Aksoy A, Gul H, Macit E (2007) Evaluation of aspect of some oxidative stress parameters using vitamin E, proanthocyanidin and N-acetylcysteine against exposure to cyfluthrin in mice. Pestic Biochem Physiol 88:43–49

    Article  CAS  Google Scholar 

  37. 37.

    Klotz LO, Kröncke KD, Buchczyk DP, Sies H (2003) Role of copper, zinc, selenium and tellurium in the cellular defense against oxidative and nitrosative stress. J Nutr 133(5 suppl 1):1448S–1451S

    PubMed  CAS  Google Scholar 

  38. 38.

    Dzobo K, Naik YS (2013) Effect of selenium on cadmium-induced oxidative stress and esterase activity in rat organs. S Afr J Sci 109(5/6), Art. #965, 8 p.

  39. 39.

    Machlin LJ, Bendich A (1987) Free radical tissue damage: protective role of antioxidant nutrients. FASEB J 1(6):441–445

    PubMed  CAS  Google Scholar 

  40. 40.

    Dar MA, Khan AM, Raina R, Verma PK, Sultana M (2013) Effect of repeated oral administration of bifenthrin on lipid peroxidation and anti-oxidant parameters in Wistar rats. Bull Environ Contam Toxicol 91(1):125–128. doi:10.1007/s00128-013-1022-7. Epub 2013 Jun 2

    Google Scholar 

  41. 41.

    Singh SN, Vats P, Kumria MM, Ranganathan S, Shyam R, Arora MP, Jain CL, Sridharan K (2001) Effect of high altitude (7, 620 m) exposure on glutathione and related metabolism in rats. Eur J Appl Physiol 84(3):233–237

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Flohé BR (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 27(9–10):951–965

    Article  Google Scholar 

  43. 43.

    Khan AM, Sultana M, Raina R, Dubey N, Dar SA (2013) Effect of sub-acute toxicity of bifenthrin on antioxidant status and hematology after its oral exposure in goats. Proc Natl Acad Sci India Sect B Biol Sci 83(4):545–549

    Article  CAS  Google Scholar 

  44. 44.

    Carreras I, Castellari M, Valero A, Antonio J, Sarraga C (2005) Influence of enrofloxacin administration on the proteolytic and antioxidant enzyme activities of raw and cooked turkey products. J Sci Food Agric 85:2407–2412

    Article  CAS  Google Scholar 

  45. 45.

    Yazar E, Tras B (2001) Effect of fluoroquinolone antibiotic on hepatic superoxide dismutase and glutathione peroxidase activities in healthy and experimentally induced peritonitis mice. Revue Med Vet 152:235–238

    CAS  Google Scholar 

  46. 46.

    Raina R, Verma PK, Pankaj NK, Kant V (2009) Ameliorative effects of alfa-tocopherol on cypermethrin induced oxidative stress and lipid peroxidation in Wistar rats. Int J Med Med Sci 1:396–399

    CAS  Google Scholar 

  47. 47.

    MacPherson A (1994) Selenium, vitamin E and biological oxidation. In: Recent advances in animal nutrition. ISBN 1-897676-01-8

  48. 48.

    Watanabe T, Kiron V, Satoh S (1997) Trace minerals in fish nutrition. J Aquac 151:185–207

    Article  CAS  Google Scholar 

  49. 49.

    Xia L, Nordman T, Olsson JM, Damdimopoulos A, Bjorkhem-Bergman L, Nalvarte I et al (2003) The mammalian selenoenzyme thioredoxin reductase reduces ubiquinone. A novel mechanism for defense against oxidative stress. J Biol Chem 278:2141–2146

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Lazarus M, Orct T, Blanusa M, Kostial K, Pirsljin J, Beer-Ljubic B (2011) Effect of selenium pre-treatment on antioxidative enzymes and lipid peroxidation in Cd-exposed suckling rats. Biol Trace Elem Res 142(3):611–622. doi:10.1007/s12011-010-8775-1

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Douglas KT (1987) Mechanism of action of glutathione-dependent enzymes. Adv Enzymol Relat Areas Mol Biol 59:103–167

    PubMed  CAS  Google Scholar 

  52. 52.

    Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30(6):445–600

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Alicia IW, Laura IU, Hugo GO, Nora GB (2002) Ciprofloxacin increases hepatic and renal lipid hydroperoxides levels in mice. Biocell 26:225–228

    Google Scholar 

  54. 54.

    Sarban A, Sezgin A, Kocyigit B, Mithat Y, Ugur A, Isikan E (2005) Plasma total antioxidant capacity, lipid peroxidation, and erythrocyte antioxidant enzyme activities in patients with rheumatoid arthritis and osteoarthritis. Ann Clin Biochem 38:981–986

    Article  CAS  Google Scholar 

  55. 55.

    Ognjanović BI, Marković SD, Pavlović SZ, Zikić RV, Stajn AS, Saicić ZS (2008) Effect of chronic cadmium exposure on antioxidant defense system in some tissues of rats: protective effect of selenium. Physiol Res 57(3):403–411

    PubMed  Google Scholar 

  56. 56.

    Oda SS, El-Maddawy ZKh (2012) Protective effect of vitamin E and selenium combination on deltamethrin-induced reproductive toxicity in male rats. Exp Toxicol Pathol 64(7–8):813–819. doi: 10.1016/j.etp.2011.03.001. Epub 2011 Apr 7

Download references

Author information



Corresponding author

Correspondence to Soya Rungsung.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rungsung, S., Rampal, S. Ameliorative Effect of Selenium on Enrofloxacin-Induced Lipid Peroxidation and Antioxidant Imbalance. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 84, 947–951 (2014).

Download citation


  • Oxidative stress
  • Enrofloxacin
  • Selenium
  • Lipid peroxidation