Ameliorative Effect of Selenium on Enrofloxacin-Induced Lipid Peroxidation and Antioxidant Imbalance

  • Soya RungsungEmail author
  • Satyavan Rampal
Research Article


Fluoroquinolones are a very important class of antimicrobials used in veterinary practice now a days. Current study was designed to evaluate the ameliorative effect of selenium on the enrofloxacin induced alterations in the antioxidant status of rat. The rats were divided into five groups of eight each. Group I served as control. Two groups were administered enrofloxacin at the dose rate of 20 and 80 mg/kg body weight, respectively for 21 days and other two groups were co-administered with organic selenium at supra nutritional level in the feed and gavaged enrofloxacin at the dose rate of 20 and 80 mg/kg body weight, respectively for 21 days. Enrofloxacin administration resulted in a marked alteration in antioxidant status in the blood of rats. There was a significant increase in the extent of lipid peroxidation but the extent of lipid peroxidation was lesser in the selenium supplemented groups. The activity of antioxidant enzymes viz. glutathione peroxidase, superoxide dismutase and catalase was significantly decreased in a dose-dependent manner. The altered activities of the enzymes were improved with selenium supplementation. The results from the current study indicate that enrofloxacin administration for 21 days results in an altered antioxidant status in rats and induces a dose-dependent lipid peroxidation. These alterations were prevented by simultaneous exposure of selenium in the diet.


Oxidative stress Enrofloxacin Selenium Lipid peroxidation 


  1. 1.
    Randall C, Walker MD (1999) The fluoroquinolones. Mayo Clin Proc 74:1030–1037CrossRefGoogle Scholar
  2. 2.
    Dowers KL, Tasker S, Radecki VS, Lappin MR (2009) Use of pradofloxacin to treat experimentally induced Mycoplasma hemofelis infection in cats. Am J Vet Res 70:105–111PubMedCrossRefGoogle Scholar
  3. 3.
    Elmas M, Tiras B, Kaya S, Bas AL, Yazar E, Yarsan E (2001) Pharmacokinetics of enrofloxacin after intravenous and intramuscular administration in angora goats. Can J Vet Res 65(1):64–67PubMedPubMedCentralGoogle Scholar
  4. 4.
    Mitchell MA (2006) Therapuetic review enrofloxacin. J Exot Pet Med 15(1):66–69CrossRefGoogle Scholar
  5. 5.
    Ibrahim IG, Yarsan E (2011) Enrofloxacin drug induced reactive oxygen species. Res Opin Anim Vet Sci 1(8):489–491Google Scholar
  6. 6.
    Jo J (2005) Overexpression of a eukaryotic glutathione reductase gene from Brassica campestris improved resistance to oxidative stress in Escherichia coli. Biochem Biophys Res Commun 326(3):618–623PubMedCrossRefGoogle Scholar
  7. 7.
    Mohr JFA (2005) Retrospective, comparative evaluation of dysglycemias in hospitilised patients receiving gatifloxacin, levofloxacin ciprofloxacin, orceftriaxone. Pharmacotherapy 25(10):1303–1309PubMedCrossRefGoogle Scholar
  8. 8.
    Park-Wyllie LY, Juurlink DN, Kopp A, Shah BR, Stukel TA, Stumpo C, Dresser L, Low DE, Mamdabni MM (2006) Outpatient gatifloxacin therapy and dysglycemia in older adults. N Engl J Med 354(13):1352–1360Google Scholar
  9. 9.
    Rampal S, Kaur R, Sethi R, Singh O, Sood N (2008) Ofloxacin-associated retinopathy in rabbits: role of oxidative stress. Hum Exp Toxicol 27(5):409–415PubMedCrossRefGoogle Scholar
  10. 10.
    Zhao B, Chignell CF, Rammal M, Smith F, Hamilton MG, Andley UP, Roberts JE (2010) Detection and prevention of ocular phototoxicity of ciprofloxacin and other fluoroquinolone antibiotics. J Photochem Photobiol B 86(4):798–805CrossRefGoogle Scholar
  11. 11.
    Etminan M, Forooghian F, Brophy JM, Bird ST, Maberley D (2012) Oral fluoroquinolones and the risk of retinal detachment. JAMA 307(13):1414–1419PubMedCrossRefGoogle Scholar
  12. 12.
    Takhshid MA, Tavasuli RA, Heidary Y, Keshavarz M, Kargar H (2012) Protective effect of Vitamins E and C on endosulfan-induced reproductive toxicity in male rats. Indian J Med Sci 37(3):173–180Google Scholar
  13. 13.
    Talla V, Veerareddy PR (2011) Oxidative stress induced by fluoroquinolones on treatment for complicated urinary tract infections in Indian patients. J Young Pharm 3:304–309PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Hayem G, Petit PX, Levacher M, Gaudhin C, Kahn MF, Pocidalo JJ (1994) Cytofluorometric analysis of chondrotoxicity of fluoroquinolone antimicrobial agents. AAC 38:243–247CrossRefGoogle Scholar
  15. 15.
    Pouzaud F, Benard-Beaubois K, Warnet JM, Havem G, Rat P (2004) In vitro discrimination of fluoroquinolones toxicity on tendon cells: involvement of oxidative stress. J Pharmacol Exp Ther 308:394–402PubMedCrossRefGoogle Scholar
  16. 16.
    Gurbay A, Gonthier B, Signorini-Allibe N, Barret L, Favier A, Hincal F (2006) Ciprofloxacin-induced DNA damage in primary culture of rat astrocytes and protection by Vit. E. Neurotoxicology 27:6–10PubMedCrossRefGoogle Scholar
  17. 17.
    Yousef MI (2010) Vitamin E modulates reproductive toxicity of pyrethroid lambda-cyhalothrin in male rabbits. Food Chem Toxicol 48:1152–1159PubMedCrossRefGoogle Scholar
  18. 18.
    Piršljin J, Milinković Tur S, Zdelar-Tuk M, Beer-Ljubić B, Stojević Z, Gradinski-Vrbanac B (2006) Effect of fasting and refeeding on blood glutathione and lipid peroxide concentration of cockerels and pullets. Dtsch Tierärztl Wochenschr 113:453–457Google Scholar
  19. 19.
    Surai PF (2002) Selenium in poultry nutrition part I. Antioxidant properties, deficiency and toxicity. World Poult Sci J 58:333–347CrossRefGoogle Scholar
  20. 20.
    Schrauzer GN (2000) Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J Nutr 130:1653–1656PubMedGoogle Scholar
  21. 21.
    Randjelovic P, Veljkovic S, Stojiljkovic N, Velickovic L, Sokolovic D, Stoiljkovic M, Ilic I (2012) Protective effect of selenium on gentamicin-induced oxidative stress and nephrotoxicity in rats. Drug Chem Toxicol 35(2):141–148. doi: 10.3109/01480545.2011.589446. Epub 2011 Nov 18
  22. 22.
    Xia L, Nordman T, Olsson JM, Damdimopoulos A, Bjorkhem- Bergman L, Nalvarte I et al (2003) The mammalian selenoenzyme thioredoxin reductase reduces ubiquinone. A novel mechanism for defense against oxidative stress. J Biol Chem 278:2141–2146PubMedCrossRefGoogle Scholar
  23. 23.
    Adamcak A, Otten B (2000) Rodent therapeutics. Vet Clin North Am Exot Anim Pract 3(1):221–237, viiiGoogle Scholar
  24. 24.
    Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888PubMedGoogle Scholar
  25. 25.
    Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474PubMedCrossRefGoogle Scholar
  26. 26.
    Aebi HE (1983) Catalase. In: Bergmeyer HO (ed) Methods of enzymatic analysis, vol ΙΙΙ. Academic press, New York, pp 273–386Google Scholar
  27. 27.
    Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferase: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139PubMedGoogle Scholar
  28. 28.
    Hafeman DG, Sunde RA, Hoekstra WG (1974) Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J Nutr 104:580–587PubMedGoogle Scholar
  29. 29.
    Rehman SU (1984) Lead-induced regional lipid peroxidation in brain. Toxicol Lett 21:333–337Google Scholar
  30. 30.
    Singh S, Bansal ML, Singh TP, Kumar P (1991) Statistical methods for research workers. Kalyani Publishers, New DelhiGoogle Scholar
  31. 31.
    Fatma A (2005) Civcivlerde bazı kinolon grubu antibiyotiklerin katalaz aktivitesi ve malondialdehit düzeyi üzerine etkisi. AÜ Sağ Bi Derg 14:135–150Google Scholar
  32. 32.
    Dubey N, Raina R, Khan AM (2012) Toxic effects of deltamethrin and fluoride on antioxidant parameters in rats. Fluoride 45:242–246Google Scholar
  33. 33.
    McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprien). J Biol Chem 244:6049–6055PubMedGoogle Scholar
  34. 34.
    Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208PubMedCrossRefGoogle Scholar
  35. 35.
    Kirshenbaum L, Singal P (1993) Increase in endogenous antioxidant enzymes protects the heart against reperfusion injury. Am J Physiol 265:H484–H493PubMedGoogle Scholar
  36. 36.
    Eraslan G, Saygi S, Essiz D, Aksoy A, Gul H, Macit E (2007) Evaluation of aspect of some oxidative stress parameters using vitamin E, proanthocyanidin and N-acetylcysteine against exposure to cyfluthrin in mice. Pestic Biochem Physiol 88:43–49CrossRefGoogle Scholar
  37. 37.
    Klotz LO, Kröncke KD, Buchczyk DP, Sies H (2003) Role of copper, zinc, selenium and tellurium in the cellular defense against oxidative and nitrosative stress. J Nutr 133(5 suppl 1):1448S–1451SPubMedGoogle Scholar
  38. 38.
    Dzobo K, Naik YS (2013) Effect of selenium on cadmium-induced oxidative stress and esterase activity in rat organs. S Afr J Sci 109(5/6), Art. #965, 8 p.
  39. 39.
    Machlin LJ, Bendich A (1987) Free radical tissue damage: protective role of antioxidant nutrients. FASEB J 1(6):441–445PubMedGoogle Scholar
  40. 40.
    Dar MA, Khan AM, Raina R, Verma PK, Sultana M (2013) Effect of repeated oral administration of bifenthrin on lipid peroxidation and anti-oxidant parameters in Wistar rats. Bull Environ Contam Toxicol 91(1):125–128. doi: 10.1007/s00128-013-1022-7. Epub 2013 Jun 2Google Scholar
  41. 41.
    Singh SN, Vats P, Kumria MM, Ranganathan S, Shyam R, Arora MP, Jain CL, Sridharan K (2001) Effect of high altitude (7, 620 m) exposure on glutathione and related metabolism in rats. Eur J Appl Physiol 84(3):233–237PubMedCrossRefGoogle Scholar
  42. 42.
    Flohé BR (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 27(9–10):951–965CrossRefGoogle Scholar
  43. 43.
    Khan AM, Sultana M, Raina R, Dubey N, Dar SA (2013) Effect of sub-acute toxicity of bifenthrin on antioxidant status and hematology after its oral exposure in goats. Proc Natl Acad Sci India Sect B Biol Sci 83(4):545–549CrossRefGoogle Scholar
  44. 44.
    Carreras I, Castellari M, Valero A, Antonio J, Sarraga C (2005) Influence of enrofloxacin administration on the proteolytic and antioxidant enzyme activities of raw and cooked turkey products. J Sci Food Agric 85:2407–2412CrossRefGoogle Scholar
  45. 45.
    Yazar E, Tras B (2001) Effect of fluoroquinolone antibiotic on hepatic superoxide dismutase and glutathione peroxidase activities in healthy and experimentally induced peritonitis mice. Revue Med Vet 152:235–238Google Scholar
  46. 46.
    Raina R, Verma PK, Pankaj NK, Kant V (2009) Ameliorative effects of alfa-tocopherol on cypermethrin induced oxidative stress and lipid peroxidation in Wistar rats. Int J Med Med Sci 1:396–399Google Scholar
  47. 47.
    MacPherson A (1994) Selenium, vitamin E and biological oxidation. In: Recent advances in animal nutrition. ISBN 1-897676-01-8Google Scholar
  48. 48.
    Watanabe T, Kiron V, Satoh S (1997) Trace minerals in fish nutrition. J Aquac 151:185–207CrossRefGoogle Scholar
  49. 49.
    Xia L, Nordman T, Olsson JM, Damdimopoulos A, Bjorkhem-Bergman L, Nalvarte I et al (2003) The mammalian selenoenzyme thioredoxin reductase reduces ubiquinone. A novel mechanism for defense against oxidative stress. J Biol Chem 278:2141–2146PubMedCrossRefGoogle Scholar
  50. 50.
    Lazarus M, Orct T, Blanusa M, Kostial K, Pirsljin J, Beer-Ljubic B (2011) Effect of selenium pre-treatment on antioxidative enzymes and lipid peroxidation in Cd-exposed suckling rats. Biol Trace Elem Res 142(3):611–622. doi: 10.1007/s12011-010-8775-1 PubMedCrossRefGoogle Scholar
  51. 51.
    Douglas KT (1987) Mechanism of action of glutathione-dependent enzymes. Adv Enzymol Relat Areas Mol Biol 59:103–167PubMedGoogle Scholar
  52. 52.
    Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30(6):445–600PubMedCrossRefGoogle Scholar
  53. 53.
    Alicia IW, Laura IU, Hugo GO, Nora GB (2002) Ciprofloxacin increases hepatic and renal lipid hydroperoxides levels in mice. Biocell 26:225–228Google Scholar
  54. 54.
    Sarban A, Sezgin A, Kocyigit B, Mithat Y, Ugur A, Isikan E (2005) Plasma total antioxidant capacity, lipid peroxidation, and erythrocyte antioxidant enzyme activities in patients with rheumatoid arthritis and osteoarthritis. Ann Clin Biochem 38:981–986CrossRefGoogle Scholar
  55. 55.
    Ognjanović BI, Marković SD, Pavlović SZ, Zikić RV, Stajn AS, Saicić ZS (2008) Effect of chronic cadmium exposure on antioxidant defense system in some tissues of rats: protective effect of selenium. Physiol Res 57(3):403–411PubMedGoogle Scholar
  56. 56.
    Oda SS, El-Maddawy ZKh (2012) Protective effect of vitamin E and selenium combination on deltamethrin-induced reproductive toxicity in male rats. Exp Toxicol Pathol 64(7–8):813–819. doi:  10.1016/j.etp.2011.03.001. Epub 2011 Apr 7

Copyright information

© The National Academy of Sciences, India 2014

Authors and Affiliations

  1. 1.Department of Veterinary Pharmacology and Toxicology, College of Veterinary SciencesGuru Angad Dev Veterinary and Animal Sciences University (GADVASU)LudhianaIndia

Personalised recommendations