Skip to main content
Log in

Identification of RAPD Markers Associated with Morphological, Biochemical and Ionomic Characteristics in Indian Tomato Genotypes

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Random Amplified Polymorphic DNA (RAPD) technique is one of the simplest marker techniques used in the differentiation of organisms. In the present study, 28 Indian tomato genotypes along with morphological, biochemical and ionomic characteristics were subjected to RAPD analysis. Ten random primers were selected from 100 operon primers which produced 88 reproducible bands; 89.8 % (79) of bands were polymorphic and 10.2 % (9) were monomorphic. The total number of markers identified by SMA in different parameters were plant height-06, fruit number-07, fruit cluster-03, fruit weight-03, pH-03, titratable acidity-03, TSS-03, total sugars-07, reducing sugars-06, non-reducing sugars-02, and lycopene-05. In case of macroelements, the total number of markers identified in SMA was P-03, K-05, Ca-06, Mg-03; for microelements, Mn-03, Fe-01, Co-06, Ni-06, Cu-04, Bo-06, Na-04, Mo-07, Cd-02 and Li-06. The total markers associated by SMRA showed the following. Plant height-06, fruit number-11, fruit cluster-06, fruit weight-17, pH-03, titratable acidity-04, TSS-04, total sugars-19, reducing sugars-20, non-reducing sugars-14, lycopene-19, P-13, K-18, Ca-03, Mg-03, Iron-13, Co-04, Ni-13, Cu-16, Zn-26, Bo-22, Na-21, Mo-20, Cd-18 and Li-12. The study suggested that the RAPD markers identified could be used in breeding elite tomato genotypes with good characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Prarthana S, Prasad DT, Shivanna MB (2012) Evaluation of certain Indian tomato genotypes for morphological, biochemical, organoleptic and ionomic characteristics (unpublished)

  2. Comlekcioglu N, Simsek O, Boncuk M, Aka-Kacar Y (2010) Genetic characterization of heat tolerant tomato (Solanum lycopersicon) genotypes by SRAP and RAPD markers. Gen Mol Res 9:2263–2274

    Article  CAS  Google Scholar 

  3. Ibrahim AA, Mohammad AB, Khan HA, Al Farhan AH, Al Homaidan AA, Bahkali HA, Sadoon MA, Shobrak M (2010) A brief review of molecular techniques to assess plant diversity. Int J Mol Sci 11:2079–2096

    Article  Google Scholar 

  4. Nybom Hilde (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  CAS  PubMed  Google Scholar 

  5. Hu X, Wang H, Chen J, Yang W (2012) Genetic diversity of Argentina tomato varieties revealed by morphological traits, simple sequence repeat, and single nucleotide polymorphism markers. Pak J Bot 44:485–492

    CAS  Google Scholar 

  6. Salari A, Theertha PrasadD (2010) Identification of molecular markers associated with lycopene and carotenoid contents in tomato. Ind J Hort 67:191–196

    Google Scholar 

  7. Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8–15

    Article  CAS  Google Scholar 

  8. Krizman MJ, Jakse D, Baricevic B, Javornik Prosek M (2006) Robust CTAB-activated charcoal protocol for plant DNA extraction. Acta Agric Slovenica 87:427–433

    CAS  Google Scholar 

  9. Sajad MZ, Nazir M (2010) Identification of molecular markers associated with accumulation of soluble silicon in aerobically grown rice. Int J Curr Res 10:103–109

    Google Scholar 

  10. Shalini KV, Manjunatha S, Lebrun P, Berger A, Baudouin L, Pirany N, Ranganath RM, Prasad DT (2007) Identification of molecular markers associated with mite resistance in coconut (Cocos nucifera L.). Genome 50:35–42

    Article  CAS  PubMed  Google Scholar 

  11. Vishwanath K, Ananthararayanan TV, Pallavi HM, Ramegowda Rajendra Prasad S, Prasanna KPR, Hittalamani S (2010) Varietal characterization of tomato cultivars based on RAPD markers. Res J Agric Biol Sci 6:713–715

    CAS  Google Scholar 

  12. Fan-juan M, Xiang-yang XU, Feng-lan H, J-fu LI (2010) Analysis of genetic diversity in cultivated and wild tomato varieties in Chinese market by RAPD and SSR. Agric Sci China 9:1430–1437

    Article  Google Scholar 

  13. Agrama HA, Tuinstra MR (2003) Phylogenetic diversity and relationships among sorghum accessions using SSRs and RAPDs. Afr J Biotech 2:334–340

    CAS  Google Scholar 

  14. Carelli BP, Gerald LTS, Grazziotin FG, Echeverrigaray S (2006) Genetic diversity among Brazilian cultivars and land races of tomato Lycopersicon esculentum Mill. revealed by RAPD markers. Genet Res Crop Evol 53:395–400

    Article  CAS  Google Scholar 

  15. Rajput SG, Wable KJ, Sharma KM, Kubde PD, Mulay SA (2006) Reproducibility testing of RAPD and SSR markers in tomato. Afr J Biotech 5:108–112

    CAS  Google Scholar 

  16. Lin KH, Lo HF, Lee SP, George Kuo C, Chen JT, Yeh WL (2006) RAPD markers for the identification of yield traits in tomatoes under heat stress via bulked segregant analysis. Hereditas 143:142–154

    Article  PubMed  Google Scholar 

  17. Doganlar S, Frary A, Tanksley SD (2000) The genetic basis of seedweight variation: tomato as a model system. Theor Appl Gene 100:1267–1273

    Article  CAS  Google Scholar 

  18. Rodica S, Apahidean SA, Apaiıdean M, Manitiu Paulette L (2008) Yield, physical and chemical characteristics of greenhouse tomato grown on soil and organic substratum. 43rd Croatian and 3rd Int Symposium on Agric Opatija Croatia pp. 439–443

  19. Georgelis N, Scott JW, Baldwin EA (2004) Relationship of tomato fruit sugar concentration with physical and chemical traits and linkage of RAPD markers. J Am Soc Hort Sci 129:839–845

    CAS  Google Scholar 

  20. Zhang Y, Stommel JR (2001) Development of SCAR and CAPS markers linked to the beta gene in tomato. Crop Sci 41:1602–1608

    Article  CAS  Google Scholar 

  21. Rousseaux MC, Jones CM, Adams D, Chetelat R, Bennett A, Powell A (2005) QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor Appl Gene 111:1396–1408

    Article  CAS  Google Scholar 

  22. Lexer C, Welch ME, Durphy JL, Rieseberg LH (2003) Natural selection for salt tolerance quantitative trait loci (QTLs) in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a diploid hybrid species. Mol Ecol 12:1225–1235

    Article  CAS  PubMed  Google Scholar 

  23. Peleg ZY, Saranga AM, Yazici T, Fahima L, Ozturk Cakmak I (2008) Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306:57–67

    Article  CAS  Google Scholar 

  24. Ding G, Yang M, Hu Y, Liao Y, Shi L, Xu F, Meng J (2010) Quantitative trait loci affecting seed mineral concentrations in Brassica napus grown with contrasting phosphorus supplies. Ann Bot 105:1221–1234

    Article  CAS  PubMed  Google Scholar 

  25. Shah MM, Hassan SW, Maqbool K, Shahzadi I, Pervez A (2010) Comparisons of DNA marker-based genetic diversity with phenotypic estimates in maize grown in Pakistan. Genet Mol Res 9:1936–1945

    Article  CAS  PubMed  Google Scholar 

  26. Yildirim N, Ercisli S, Agar G, Orhan E, Hizarci Y (2010) Genetic variation among date plum (Diospyros lotus) genotypes in Turkey. Genet Mol Res 9:981–986

    Article  CAS  PubMed  Google Scholar 

  27. Ezekiel CN, Nwangburuka CC, Ajibade OA, Odebode AC (2011) Genetic diversity in 14 tomato (Lycopersicon esculentum Mill.) varieties in Nigerian markets by RAPD-PCR technique. Afr J Biotech 10:4961–4967

    CAS  Google Scholar 

  28. Nandini R, Chikkadevaiah (2005) DNA Fingerprinting of sunflower genotypes (Helianthus annuus L.). Helia 28:9–18

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. David Salt for ionomic estimation of 33 Indian genotypes of Tomato at Purdue University, West Lafayette, USA. They also wish to thank Dr. Avtar K Handa and Dr. K. G. Raghothama and USDA for all their valuable inputs and funding of USAID Project. Special thanks are due to Ms. Shuba Karanth and Mr. Santosh Rathod for helping in conducting statistical analysis. The first author thanks Kuvempu University for giving the opportunity to pursue the doctoral study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Shivanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prarthana, S., Prasad, D.T. & Shivanna, M.B. Identification of RAPD Markers Associated with Morphological, Biochemical and Ionomic Characteristics in Indian Tomato Genotypes. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 84, 55–64 (2014). https://doi.org/10.1007/s40011-013-0202-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-013-0202-x

Keywords

Navigation