Skip to main content

Advertisement

Log in

Quantitative evaluation reveals taxonomic over-splitting in extinct marine invertebrates: implications in conserving biodiversity

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Till date, morphology in general was characterized qualitatively to support the traditional classification system. This study for the first time uses an integrated approach to explore the appropriateness of traditional classification by superposing quantitative characters on qualitative classification using advanced mathematical techniques. Here, a quantitative method was applied that calculates changes in body shape by digitizing the inferred ecological niche and functional attributes of relevant morphological traits. Subsequently, absolute values were assigned to structural–functional traits of extinct atrypids to determine their taxonomy at a higher resolution. Investigating phenotypic diversity in these once abundant Paleozoic brachiopods from deep time is important for predicting future marine biodiversity of their closest living relatives and in conserving the marine ecosystem at large. Results show taxonomic over-splitting, a possible consequence of qualitative taxonomy. This study highlights the necessity of revisiting prior taxonomy by incorporating quantified traits and elicits the hazards of proposing classification based on qualitative traits alone. Perhaps, this study can be a starting point to improve the biological classification system in places where it must be based on morphology alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sharma SKS, Bazaz AB (2012) Sustainable management of biodiversity in the context of climate change—issues, challenges and response. Proc Natl Acad Sci India B Biol Sci 82(2):251–260

    Google Scholar 

  2. Venkataraman K (2012) Biodiversity and its conservation. Proc Natl Acad Sci India B Biol Sci 82(2):271–282

    Google Scholar 

  3. Isaac NJB, Mallet J, Mace GM (2004) Taxonomic inflation: its influence on macroecology and conservation. Trends Ecol Evol 19(9):464–469

    Article  PubMed  Google Scholar 

  4. Mace GM (2004) The role of taxonomy in species conservation. Philos Trans R Soc B Biol Sci 359(1444):711–719

    Article  Google Scholar 

  5. Ricketts TH, Dinerstein E, Boucher T, Brooks TM, Butchart SH, Hoffmann M, Lamoreux JF, Morrison J, Parr M, Pilgrim JD et al (2005) Pinpointing and preventing imminent extinctions. Proc Natl Acad Sci USA 102(51):18497–18501

    Article  PubMed  CAS  Google Scholar 

  6. Queiroz KD, Gauthier J (1990) Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Syst Zool 39(4):307–322

    Article  Google Scholar 

  7. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Evol Syst 33:475–505

    Article  Google Scholar 

  8. Reid DG, Rumbak E, Thomas RH (1996) DNA, morphology and fossils: phylogeny and evolutionary rates of the gastropod genus Littorina. Philos Trans R Soc B Biol Sci 351(1342):877–895

    Article  CAS  Google Scholar 

  9. De A, Bose R (2009) Can molecular biology and bioinformatics be used to probe an evolutionary pathway? Proc Natl Acad Sci 106:E141

    Article  PubMed  Google Scholar 

  10. Linnaeus C (1758) Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, 10th edn. Laurentius Salvius, Stockholm

  11. Mayr E, Bock WJ (2002) Classifications and other ordering systems. J Zool Syst Evol Res 40:169–194

    Article  Google Scholar 

  12. Clarridge JE (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17:840–862

    Article  PubMed  CAS  Google Scholar 

  13. Cipriani G, Testolin R, Gardner R (1998) Restriction-site variation of PCR-amplified chloroplast DNA regions and its implication for the evolution and taxonomy of Actinidia. Theor Appl Genet 96:389–396

    Article  CAS  Google Scholar 

  14. Bambach RK, Knoll AH, Wang SC (2004) Origination, extinction, and mass depletions of marine diversity. Palaeobiology 30(4):522–542

    Article  Google Scholar 

  15. Bush AM, Bambach RK (2011) Paleoecologic megatrends in marine metazoa. Annu Rev Earth Planet Sci 39:241–269

    Article  CAS  Google Scholar 

  16. Bose R (2012) A new morphometric model in distinguishing two closely related extinct brachiopod species. Hist Biol 24:1–10

    Article  Google Scholar 

  17. Bose R (2012) Quantitative analysis strengthens qualitative assessment: a case study of Devonian brachiopod species. Paläontologische Zeitschrift, Scientific Contributions to Palaeontology 86(3):1–10

    Google Scholar 

  18. Bose R, Schneider C, Polly PD, Yacobucci M (2010) Ecological interactions between Rhipidomella (Orthides, brachiopoda) and its endoskeletobionts and predators from the Middle Devonian Dundee Formation of Ohio, United states. Palaios 25:196–208

    Article  Google Scholar 

  19. Bose R, Schneider C, Leighton LR, Polly PD (2011) Influence of atrypid morphological shape on Devonian episkeletobiont assemblages from the lower Genshaw Formation of the Traverse Group of Michigan: a geometric morphometric approach. Palaeogeogr Palaeoecol Palaeoclimatol 310:427–441

    Article  Google Scholar 

  20. Bose R (2012) Biodiversity and evolutionary ecology of extinct organisms. Springer, New York

    Google Scholar 

  21. Bose R (2013) Palaeobiology of middle paleozoic marine brachiopods—a case study of extinct organisms in classical paleontology. Springer, New York

    Book  Google Scholar 

  22. Bose R (2013) Devonian paleoenvironments of Ohio. Springer, New York

    Book  Google Scholar 

  23. Bose R, Bartholomew A (2013) Macroevolution in deep time. Springer, New York

    Book  Google Scholar 

  24. Elrick M, Rieboldt S, Saltzman M, McKay RM (2011) Oxygen-isotope trends and seawater temperature changes across the Late Cambrian Steptoean positive carbon-isotope excursion (SPICE event). Geology 39:987–990

    Article  Google Scholar 

  25. Newton A (2011) Spicy climate. Nat Geosci 4:658

    Article  CAS  Google Scholar 

  26. Williams A, Brunton CHC, Carlson SJ (2002) Brachiopoda (revised). In: Kaesler RL (ed) Treatise on invertebrate paleontology. Part H. Geological Society of America, Boulder, Colorado and University of Kansas, Lawrence, pp 1–807

    Google Scholar 

  27. Rohlf JF (2012) Morphometrics. SUNY, Stony Brook. http://life.bio.sunysb.edu/morph/. Accessed 30 March 2013

  28. Adams D, Rohlf F, Slice D (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Italian J Zool 71:5–16

    Article  Google Scholar 

  29. Salazar-Ciudad I, Jernvall JA (2010) Computational model of teeth and the developmental origins of morphological variation. Nature 464:583–586

    Article  PubMed  CAS  Google Scholar 

  30. Klingenberg CP (2010) Evolution and development of shape: integrating quantitative approaches. Nat Rev Genet 11:623–635

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the following research Grants; Bose–Dunbar–Schuchert Grant (Yale Peabody Museum), Theodore Roosevelt Memorial Fund (American Museum of Natural History), and Galloway Horowitz Research Grant-in-Aid (Indiana University). The authors would like to thank David Polly (Indiana University, Bloomington) for his valuable suggestions in applications of morphometric techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rituparna Bose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bose, R., De, A. Quantitative evaluation reveals taxonomic over-splitting in extinct marine invertebrates: implications in conserving biodiversity. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 83, 533–537 (2013). https://doi.org/10.1007/s40011-013-0179-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-013-0179-5

Keywords

Navigation