Skip to main content
Log in

Fipronil-Induced Biochemical Alterations During Oral Subacute Toxicity in Buffalo Calves

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

In the present investigation, detailed oral subacute toxicity study of fipronil, a phenylpyrazole insecticide, was undertaken in male buffalo calves. In oral subacute toxicity study, fipronil was administrated to male buffalo calves at repeated oral dose of 0.5 mg kg−1 day−1 for 21 consecutive days. Fipronil produced varying degree of mild to moderate toxic signs in buffalo calves. Fipronil produced toxic signs of salivation, lachrymal discharge, dullness, depression, decreased body weight gain, alopecia and sunken eyes. All the fipronil-exposed animals recovered within 7 days after insecticidal treatment was stopped. Repeated oral administration of fipronil at the dose rate of 0.5 mg kg−1 day−1 for 21 consecutive days produced significant elevation of whole blood cholinesterase to the extent of 45.17 %. Fipronil on repeated oral administration produced significant increase in the plasma levels of lactate dehydrogenase (7.08 %), aspartate aminotransferase (43.55 %) and acid phosphatase (11.647), but no significant effect on the plasma levels of alanine aminotransferase and alkaline phosphatase in male buffalo calves. Subacute oral administration of fipronil elevated the levels of gamma-glutamyl transferase (25.53 %), total plasma proteins (20.59 %) and blood glucose (40.75 %). However, no significant alteration in the levels of blood urea nitrogen, plasma creatinine and cholesterol was seen following daily oral administration of fipronil in the buffalo calves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tingle CC, Rother JA, Dewhurst CF, Lauer S, King WJ (2003) Fipronil: environmental fate, ecotoxicology and human health concerns. Rev Environ Contam Toxicol 176:1–66

    PubMed  Google Scholar 

  2. Gunasekara AS, Truong T, Goh KS, Spurlock F, Tjeerdema RS (2007) Environmental fate and toxicology of fipronil. J Pesticide Sci 32(3):189–199

    Article  CAS  Google Scholar 

  3. Tomlin CDS (2006) The pesticide manual, a world compendium, 14th edn. British Crop Protection Council, Hampshire, pp 462–464

    Google Scholar 

  4. Moffat AS (1993) New chemicals seek to outwit insect pests. Science 261:550–551

    Article  PubMed  CAS  Google Scholar 

  5. Le Faouder J, Bichon E, Brunschwig P, Landelle R, Andre F, Le Bizec B (2007) Transfer assessment of fipronil residues from feed to cow milk. Talanta 73:710–717

    Article  PubMed  Google Scholar 

  6. Clasen B, Loro VL, Cattaneo R, Moraes B, Lópes T, de Avila LA, Zanella R, Reimche GB, Baldisserotto B (2012) Effects of the commercial formulation containing fipronil on the non-target organism Cyprinus carpio: implications for rice-fish cultivation. Ecotoxicol Environ Saf. doi:10.1016/j.ecoenv.2011.10.001

  7. Leghait J, Gayrard V, Toutain PL, Picard-Hagen N, Viguié C (2010) Is the mechanisms of fipronil-induced thyroid disruption specific of the rat: re-evaluation of fipronil thyroid toxicity in sheep? Toxicol Lett 194:51–57

    Article  PubMed  CAS  Google Scholar 

  8. EFSA (2012) Reasoned opinion on the modification of the existing MRL for fipronil in poultry fat. Eur Food Safety Auth J 10(5):2707 [32 p]. doi:10.2903/j.efsa.2012.2707

  9. Mohamed F, Senarathna L, Percy A, Abeyewardene M, Eaglesham G, Cheng R, Azher S, Hittarage A, Dissanayake W, Sheriff MHR, Davies W, Buckley N, Eddleston M (2004) Acute human self-poisoning with the N-phenylpyrazole insecticide Fipronil—a GABAA-gated chloride channel blocker. J Toxicol 42:955–963

    CAS  Google Scholar 

  10. Upadhyay RK, Jaiswal G, Ahmad S (2010) Biochemical and enzymatic alterations after application of fipronil, thiomethoxam and malathion to Odontotermes obesus (Isoptera: Termitidae). Acta Univ Sapientiae Agri Environ 2:58–79

    Google Scholar 

  11. WHO (1997) Pesticide residues in food. Fipronil; International Programme on Chemical Safety, World Health Organization, Lyon

  12. Jennings KA, Keller RJ, Doss RB (2002) Human exposure to fipronil from dogs treated with frontline. Controv Toxicol 44:301–303

    CAS  Google Scholar 

  13. Lee SJ, Mulay P, Brown BD, Lackovic MJ, Mehler LN, Beckman J, Waltz J, Prado JB, Yvette A, Mitchell YA, Higgins SA, Schwartz A, Calvert GM (2010) Acute illnesses associated with exposure to fipronil surveillance data from 11 states in the United States, 2001–2007. Clin Toxicol 48:737–744

    Article  Google Scholar 

  14. Cardinet GH (1997) Skeletal muscle function. In: Kaneko JJ, Harvey JW, Bruss ML (eds) Clinical biochemistry of animals, 5th edn. Academic Press, San Diego, pp 407–440

    Chapter  Google Scholar 

  15. Ranjan R, Uppal SK, Chand N, Dhaliwal PS, Dumka VK (2010) Clinico-haematobiochemical profile in organophosphate/carbamate compound poisoned bovine. Ind Vet J 87(2):178–179

    CAS  Google Scholar 

  16. Chaidee A, Wongchai C, Pfeiffer W (2008) Extracellular alkaline phosphatase is a sensitive marker for cellular stimulation and exocytosis in heterotroph cell cultures of Chenopodium ruburm. J Plant Physiol 165(16):1655–1666

    Article  PubMed  CAS  Google Scholar 

  17. Ranjan B, Dumka VK, Ola AK, Rampal S (2012) Effect of oral subacute exposure of acetamiprid on some biochemical parameters in buffalo calves. Proc Natl Acad Sci India Sect B Biol Sci. doi:10.1007/s40011-012-0085-2

  18. Kramer JW, Hoffman WE (1997) Clinical enzymology. In: Kaneko JJ, Harvey JW, Bruss ML (eds) Clinical biochemistry of animals, 5th edn. Academic press, San Diego, pp 303–326

    Chapter  Google Scholar 

  19. Tennant BC (1997) Hepatic function. In: Kaneko JJ, Harvey JW, Bruss ML (eds) Clinical biochemistry of domestic animals, 5th edn. Academic Press, San Diego, pp 327–352

    Chapter  Google Scholar 

  20. Jaffrezic-Renault N (2001) New trends in biosensors for organophosphorus. Pest Sens 1:60–74

    Article  Google Scholar 

  21. Luskova V, Svoboda M, Kolaova J (2002) The effect of diazinon on blood plasma biochemistry in carp (Cyprinus carpio L.). Acta Vet Brun 71:117–123

    Article  CAS  Google Scholar 

  22. Rosol TJ, Capen CC (1997) Calcium regulating hormones and diseases of abnormal mineral (calcium, phosphorus and magnesium) metabolism. In: Kaneko JJ, Harvey JW, Bruss ML (eds) Clinical biochemistry of animals, 5th edn. Academic press, San Diego, pp 619–702

    Chapter  Google Scholar 

  23. Khan AM, Sultana M, Raina R, Dubey N, Verma PK (2013) Effect of sub-acute oral exposure of bifenthrin on biochemical parameters in crossbred goats. Proc Natl Acad Sci India Sect B Biol Sci. doi:10.1007/s40011-012-0150-x

  24. Radostits MO, Gay CC, Blood CD, Hinchcliff W (ed) (2000) Vetrinary medicine. A textbook of the diseases of cattle, sheep, pigs, goats and horses, 9th edn. WB Saunders, New York, pp 353–354

  25. USEPA (1996) Office of prevention, pesticides and toxic substances. Fipronil: environmental assessment, current for the turf registration. Memo from D. Farrar, Environmental Fate and Effects Division, to R. Keigwin, Registration Division. Washington, DC, April 26

  26. Servaljevic L, Bogojevic D, Poznanovic G, Matic S (1990) Toxic response to paraoxon is accompanied by an increased rate of acute-phase protein synthesis. Pestic Biochem Physiol 38:216–222

    Article  Google Scholar 

  27. Welch WJ (1993) How cells respond to stress. Sci Am 268:56–64

    Article  PubMed  CAS  Google Scholar 

  28. Brar RS, Sandhu HS, Singh A (2000) Veterinary clinical diagnosis by laboratory methods. Kalyani Publishers, Ludhiana, pp 130–131

    Google Scholar 

  29. Shridhar NB (2010) Toxicity of imidacloprid in buffaloes. Ind J Anim Res 44(3):224–225

    Google Scholar 

  30. Yeh IJ, Lin TJ, Hwang DY (2010) Acute multiple organ failure with imidacloprid and alcohol ingestion. Am J Emerg Med 28(2):255.e1–255.e3

    Google Scholar 

  31. Goyal S, Sandhu HS (2009) Toxic effects of sub-chronic oral exposure of indoxacarb on biochemical parameters in buffalo calves. Toxicol Int 16(2):141–146

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the facilities and funding provided by Guru Angad Dev Veterinary and Animal Sciences University for conducting the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Kumar Dumka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ola, A.K., Sandhu, H.S., Ranjan, B. et al. Fipronil-Induced Biochemical Alterations During Oral Subacute Toxicity in Buffalo Calves. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 83, 539–544 (2013). https://doi.org/10.1007/s40011-013-0167-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-013-0167-9

Keywords

Navigation