Skip to main content
Log in

Diversity and Density of Aquatic Insects in the Lower Reach of River Moirang, Manipur, North East India

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

A study on the diversity and density of aquatic insects in the lower reach of river Moirang, Manipur, India was conducted using aquatic insects as bio indicator to ascertain the pollution status of the river as it discharges into the Loktak lake (Ramsar site), the lifeline of people of Manipur. The study revealed the presence of three orders, nine families, twelve genera and eighteen species of aquatic insects in the lower reach of the river. The orders were Hemiptera, Odonata and Coleoptera. There was total absence of sensitive groups of aquatic insects like Ephemeroptera, Plecoptera and Trichoptera. According to Engelmann’s scale, Diplonychus rusticus (Fabricius) was found eudominant followed by five subdominant and six recedent species. No species was found in the dominant range. Species diversity and evenness indices fluctuated throughout the year and Shannon H′<1 in all the months indicated a stressed and disturbed environment. This is confirmed by the record of low dissolved oxygen (DO), high biological oxygen demand (BOD) and high phosphate in the water of the river. Among the heavy metals, the ranges of both lead and mercury were found to exceed the WHO maximum permissible limit. Significant positive correlation of rainfall with pH, DO, BOD, nitrate, phosphate, Berger Parker dominance index (d) and significant negative correlation with diversity index (Shannon H′) indicated that rainfall is one of the important parameters in the ecology of the system. Canonical correspondence analysis (CCA) revealed that the important physico-chemical attributes of the ecosystem were air temperature, water temperature, depth, rainfall, BOD, DO, salinity, sodium, total alkalinity, iron and lead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abell R (2002) Conservation biology for the biodiversity crisis: a freshwater follow-up. Biol Conserv 16:1435–1437

    Article  Google Scholar 

  2. Rosenberg DM, Resh VH (1993) Freshwater biomonitoring and benthic macroinvertebrates. Chapman & Hall, New York

    Google Scholar 

  3. Carter JL, Resh VH (2001) After site selection and before data analysis: sampling, sorting, and laboratory procedures used in stream benthic macroinvertebrate monitoring programs by USA state agencies. J N Am Benthol Soc 20:658–682. doi:10.2307/1468095

    Article  Google Scholar 

  4. Minshall GW, Cummis KW, Petersen RC, Cushing CE, Bruns DA, Sedell JR, Vannote RL (1985) Developments in stream ecosystem theory. Can J Fish Aquat Sci. doi:10.1139/f85-130

    Google Scholar 

  5. Kosygin L, Dhamendra H, Gyaneshwari RK (2007) Pollution status and conservation strategies of Moirang river, Manipur with a note on its aquatic bio-resources. J Environ Biol 28:669–673

    PubMed  CAS  Google Scholar 

  6. Takhelmayum K, Gupta S (2011) Diversity of aquatic insects of Loktak Lake (Ramsar Site), Manipur, North-East India with reference to environmental variables. In: Proceedings international conference on biodiversity & aquatic toxicology ICBAT, vol 196, Nagarjuna Nagar, pp 50–58

  7. Ahmed AKZ, Michael RG (1985) Seasonal fluctuations of Odonata larvae in fish ponds at different altitudes. In: Proceedings of the first Indian symposium of odonatology, 7–18

  8. Gupta S, Michael RG, Gupta A (1993) Laboratory studies on the life cycle and growth of Cloeon sp. (Ephemeroptera: Baetidae) in Meghalaya state, India. Aquat Insects 15:49–55. doi:10.1080/01650429309361500

    Article  Google Scholar 

  9. Majumdar TN, Gupta A (2005) Aquatic insects in the lentic systems of North Cachar Hills, Assam, India. J Curr Sci 7(1):219–224

    Google Scholar 

  10. Takhelmayum K, Gupta S (2011) Distribution of aquatic insects in phumdis (floating island) of Loktak Lake, Manipur, northeastern India. JoTT 3:1856–1861

    Google Scholar 

  11. ZSI (2004) State fauna series 10: fauna of Manipur, (Part-2) insects. Zoological Survey of India, Kolkata, p 625

    Google Scholar 

  12. Subramanian KA, Sivaramakrishnan KG (2007) Aquatic insects for biomonitoring freshwater ecosystems—a methodology manual. Asoka Trust for Research in Ecology and Environment (ATREE), Bangalore, p 31

    Google Scholar 

  13. Kumar A (1973) Descriptions of the last instar larvae of Odonata from the Dehra Dun Valley (India), with notes on biology I. (Suborder: Zygoptera). Orient Insects 7:23–61

    CAS  Google Scholar 

  14. Kumar A (1973) Descriptions of the last instar larvae of Odonata from the Dehra Dun Valley (India), with notes on biology II. (Suborder: Anisoptera). Orient Insects 7:291–331

    Article  Google Scholar 

  15. Bal A, Basu RC (1994) Insecta: Hemiptera: Mesovelidae, Hydrometridae, Velidae and Gerridae. State fauna series 3: fauna of West Bengal, part 5. Zoological Survey of India, Calcutta, pp 511–534

    Google Scholar 

  16. Bal A, Basu RC (1994) Insecta: Hemiptera: Belostomatidae, Nepidae, Notonectidae and Pleidae. State fauna series 5: fauna of West Bengal. part 5. Zoological Survey of India, Calcutta, pp 535–558

    Google Scholar 

  17. Wang BX, Yang LF, Yule CM (2007) Freshwater biomonitoring with macroinvertebrates in East Asia. Front Ecol Environ 5:33–42. doi:10.1890/1540-9295

    Article  Google Scholar 

  18. Westfall MJ, Tennessen KJ Jr (1996) Odonata. In: Merrit RW, Cummins (eds) An introduction to the aquatic insects of North America. Kendell/ Hunt Publishing Company, Dubuque, pp 164–211

    Google Scholar 

  19. Wollmann K (2001) Corixidae (Hemiptera, Heteroptera) in acidic mining lakes with pH less than or equal to E in Lusatia, Germany. Hydrobiologia 433(3):181–183

    Google Scholar 

  20. APHA (2005) Standard methods for examination of water and wastewater, 21st edn. APHA, AWWA, WPCF, Washington DC

    Google Scholar 

  21. Chandra R, Singh S, Raj A (2006) Seasonal bacteriological analysis of Gola river water contaminated with pulp paper mill waste in Uttaranchal, India. Environ Monit Assess 118:393–406. doi:10.1007/s10661-006-1508-4

    Article  PubMed  CAS  Google Scholar 

  22. Sundaray SK, Panda UC, Nayak BB, Bhatta D (2006) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of the Mahanadi river–estuarine system (India)—a case study. Environ Geochem Hlth 28:317–330

    Article  CAS  Google Scholar 

  23. MRC (2008) Biomonitoring of the lower Mekong River and selected tributaries, 2004–2007, MRC Technical Paper No 20, Mekong River Commission, Vientiane, ISSN: 1683-1489

  24. Minshall GW, Minshall JN (1977) Microdistribution of benthic invertebrates in a rocky mountain (USA) stream. Hydrobiologia 55(3):231–249

    Article  Google Scholar 

  25. Dallas HF, Day JA (2007) Natural variation in macroinvertebrate assemblages and the development of a biological banding system for interpreting bioassment data—a preliminary evaluation using data from upland sites in the South-Western Cape, South Africa. Hydrobiologia 575:231–244. doi:10.1007/s10750-006-0374-y

    Article  CAS  Google Scholar 

  26. Bournard M, Tachet H, Roux L, Auda Y (1987) The effects of seasonal and hydrological influences on the macroinvertebrates of the Rhone River, France 1. Methodological aspects. Arch Hydrobiol 109:287–304

    Google Scholar 

  27. Boulton AJ, Lake PS (1992) The ecology of two intermittent streams in Victoria, Australia III. Temporal changes in faunal composition. Freshw Biol 27:123–138. doi:10.1111/j.1365-2427.1992.tb00527.x

    Article  Google Scholar 

  28. Martin P, Haniffa MA, Arunachalam M (2000) Abundance and diversity of macroinvertebrates and fish in the Tamiraparani river, South India. Hydrobiologia 430:59–75

    Article  Google Scholar 

  29. Hoang TH, Lock K, Chi Dang K, De Pauw N, Goethals PLM (2010) Spatial and temporal patterns of macroinvertebrate communities in the Du river Basin in Northern Vietnam. J Freshw Ecol 25(4):637–647. doi:10.1080/02705060.2010.9664413

    Article  Google Scholar 

  30. Che Salmah MR, Abu Hassan A, Wahizatul Afzan A (2005) Preliminary study on the composition and distribution of Odonata in Perlis State Park. Malay Nat J 57(3):317–326

    Google Scholar 

  31. Newbury RW (1984) Hydrologic determinants of aquatic insect habitats. In: Resh VH, Rosenberg DM (eds) The ecology of aquatic insects. Praeger, New York, pp 323–357

    Google Scholar 

  32. Che Salmah MR (1996) Some aspect of biological and ecology of Neurothemis tullia (Drury) (Odonata: Libellulidae) in laboratory and rain fed rice field in Peninsular Malaysia. Thesis, Universiti Pertanian Malaysia, Serdand

  33. Che Salmah MR, Wahizatul Afzan A (2004) Distribution of Odonata (Insecta) in various ecosystems in northern Peninsular Malaysia. Wetl Sci 2:184–191

    Google Scholar 

  34. Engelmann HD (1973) Untersuchungen zur Erfassung predozoogener komponenten im definierten.Okosystem. Forschungen Staatl Mus Naturkde, Gorlitz

    Google Scholar 

  35. Venkatesan P (2004) Influence of temperature and salinity variations on an aquatic bug population in a tropical pond. Hydrobiologia 79:33–50

    Article  Google Scholar 

  36. Arunachalam M, Madhusoodanan Nair KCM, Vijverberg J, Kortmulder K, Suriyanarayanan H (1991) Substrate selection and seasonal variation in densities of invertebrates in stream pools of a tropical river. Hydrobiology 213:141–148. doi:10.1007/BF00015000

    Article  Google Scholar 

  37. Flecker AS, Feifarek B (1994) Disturbance and the temporal variability of invertebrate assemblages in two Andean streams. Freshw Biol 31:131–142. doi:10.1111/j.1365-2427.1994.tb00847.x

    Article  Google Scholar 

  38. Jhingran VG (1991) Fish and fisheries of India, 3rd edn. Hindustan Publishing Corporation, Delhi, p 727

    Google Scholar 

  39. Sandin L, Johnson RK (2000) The statistical power of selected indicator metrics using macroinvertebrates for assessing acidification and eutrophication of running waters. Hydrobiologia 422(423):233–243. doi:10.1023/A:1017082619481

    Article  Google Scholar 

  40. Staub R, Applinq W, Hofstetter AM, Ham JJ (1970) The effect of industrial waste of memphis and Shelby country on primary plankton producers. Bioscience 20:905–912

    Article  Google Scholar 

  41. Johnson LB, Gage SJ (1997) Landscape approaches for the analysis of aquatic ecosystems. Freshw Biol 37:113–132. doi:10.1046/j.1365-2427.1997.00156.x

    Article  Google Scholar 

  42. Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257284. doi:10.1146/annurev.ecolsys.35.120202.110122

    Article  Google Scholar 

  43. Dudgeon D (1992) Endangered ecosystems: a review of the conservation status of tropical Asian rivers. Hydrobiologia 248:167–191. doi:10.1007/BF00006146

    Article  Google Scholar 

  44. George JP (1997) Aquatic ecosystem, structure, degradation, strategies for management. In: Sinha MP (ed) Recent advances in ecological, research. APHP, Delhi, p 603

    Google Scholar 

  45. Norma-Rashid Y, Mohd-Sofian A, Zakaria-Ismail M (2001) Diversity and distribution of Odonata (dragonflies and damselflies) in the fresh water swamp lake Tasek Bera, Malaysia. Hydrobiologia 459:133–146. doi:10.1023/A:1012562611307

    Article  Google Scholar 

  46. Beecroft GA,Yammana AG, Kooi RJ (1987) Pollution monitoring, the Kanduna River. Report submitted to the Environmental Planning and Protection Division Fed. Min. of Works and Housing

  47. Sharma S, Dixit S, Jain P (2008) Statistical evaluation of hydrobiological parameters of Narmada river water at Hoshangabad city, India. Environ Monit Assess 143:195–202. doi:10.1007/s10661-007-9968-8

    Article  PubMed  CAS  Google Scholar 

  48. Hynes HBN (1974) The biology of polluted waters. Liverpool Univ. Press, Liverpool, p 202

    Google Scholar 

  49. Bharadwaj RM (2005) Water quality monitoring in India—achievements and constraints. IWG-Env, International Work Session on Water Statistics, Vienna

    Google Scholar 

  50. US Environmental Protection Agency (EPA) (1998) EPCRA Section 313. Reporting guidance for food processors. EPA Office of Pollution Prevention and Toxics, Washington, DC

    Google Scholar 

  51. Trivedy RK, Goyal PK (1986) Chemical and biological methods for water pollution studies. Environmental Publication, Karad

    Google Scholar 

  52. World Health Organization (WHO) (2004) Guideline for drinking water quality, 3rd edn. World Health Organization, Geneva, p 104

    Google Scholar 

  53. Palmer MW (1993) Putting things in even better order: the advantages of canonical correspondence analysis. Ecology 74(8):2215–2230

    Article  Google Scholar 

  54. Balachandran C, Dinakaran S, Alkananda M, Boominathan Ramachandra TV (2012) Monitoring aquatic macroinvertebrates as indicators for assessing the health of lakes in Bangalore, Karnataka. Int J Adv Life Sci 1(1):19–33 ISSN: 2277-758X

    Google Scholar 

  55. Mandaville SM (2002) Benthic macroinvertebrates in freshwater—taxa tolerance values, metrics, and protocols, project H-1. Soil & Water Conservation Society of Metro Halifax, Halifax

    Google Scholar 

  56. Girgin S, Kazancı N, Dügel M (2010) Relationship between aquatic insects and heavy metals in an urban stream using multivariate techniques. Int J Environ Sci Tech 7(4):653–664

    Article  CAS  Google Scholar 

  57. Tollett VD, Benvenutti EL, Deer LA, Rice TM (2009) Differential toxicity to Cd, Pb, and Cu in dragonfly larvae (Insecta: Odonata). In Arch Environ Con Tox 56(1):77–84. doi:10.1007/s00244-008-9170-1

    Article  CAS  Google Scholar 

  58. Che Salmah MR, Hassan STS, Hassan AA, Ali AB (1998) Influence of physical and chemical factors on the larval abundance of Neurothemis tullia (Drury) (Odonata : Libellulidae) in a rain fed rice field. Hydrobiologia 389(1–3):193–202

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Head, Department of Ecology and Environmental Science, Assam University, Silchar, Assam, India for providing laboratory facilities. The first author is thankful to the University Grants Commission, New Delhi, India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmita Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takhelmayum, K., Gupta, S. & Singh, N.R. Diversity and Density of Aquatic Insects in the Lower Reach of River Moirang, Manipur, North East India. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 83, 575–584 (2013). https://doi.org/10.1007/s40011-013-0166-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-013-0166-x

Keywords

Navigation