Skip to main content
Log in

Effect of AM Fungi (Gf, Gm) on Biomass and Gymnemic Acid Content of Gymnema sylvestre (Retz.) R. Br. ex Sm.

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

In the present investigation, effect of AM fungi (Glomus fasciculatum and Glomus mosseae) on G. sylvestre growth and gymnemic acid production was studied. Pure cultures of G. fasciculatum and G. mosseae were used as a mycorrhizal inoculum. Higher shoot and root length (32.70 and 34.70 cm) and fresh and dry weight (3.33 and 0.92 g) were recorded in Gf treated plants. HPTLC analysis revealed that Gf treated G. sylvestre showed higher gymnemic acid content in leaves (34.91 mg/g DW), shoot (31.98 mg/g DW) and root (18.72 mg/g DW). As compared to control, Gf treated G. sylvestre showed 2.28 % increase and Gm treated G. sylvestre showed 1.09 % increase in gymnemic acid content for leaf analysis; Gf showed 46 % increase and Gm showed 1.73 % increase for shoot analysis and Gf showed 27 % increase and Gm showed 0.61 % increase for root analysis. As compared to control, Gf and Gm treated G. sylvestre showed 2.28 % increase and 1.09 % increase in gymnemic acid content for leaf analysis; 46 % increase and 1.73 % increase for shoot analysis and 27 % increase and 0.61 % increase for root analysis respectively. AM have positive effect on biomass and gymnemic acid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rapini A, Chase MW, Goyder DJ, Griffiths J (2003) Asclepiadaceae classification: evaluating the phylogenetic relationships of new world Asclepiadaceae (Apocynaceae). Taxon 52:33–50

    Article  Google Scholar 

  2. Spasov A, Samokhina MP, Bulanov AE (2008) Antidiabetic properties of Gymnema sylvestre. Pharm Chem J 42(11):626–629

    Article  CAS  Google Scholar 

  3. Manohar SH, Naik PM, Praveen N, Murthy HN (2009) Distribution of gymnemic acid in various organs of Gymnema sylvestre. J For Res 20(3):268–270

    Article  Google Scholar 

  4. Madhurima, Ansari SH, Prawez A, Sayeed A, Akhtar MS (2009) Pharmacognostic and phytochemical analysis of Gymnema sylvestre R. Br. leaves. J Herb Med Toxicol 3(1):73–80

  5. Yoshikawa K, Ahihira S, Matsura K, Miyase T (1992) Dammarane saponin from Gymnema sylvestre. Phytochemistry 31:237–241

    Article  CAS  Google Scholar 

  6. Khanna VG, Kannabiran K (2008) Antimicrobial activity of saponin fractions of the leaves of Gymnema sylvestre and Eclipta prostrate. World J Microbiol Biotechnol 24:2737–2740

    Article  Google Scholar 

  7. Satdive RK, Abhilash P, Fulzele DP (2003) Antimicrobial activity of Gymnema sylvestre leaf extract. Fitoterapia 74(7–8):699–701

    Article  PubMed  CAS  Google Scholar 

  8. Malik JK, Manvi FV, Alagawadi KR, Noolvi M (2008) Evalution of anti-inflammatory activity of Gymnema sylvestre leaves extract in Rats. Int J Green Pharm 2:114–115

    Google Scholar 

  9. Trivedi PD, Pundarikakshudu KA (2008) Validated high performance thin layer chromatographic method for the estimation of gymnemic acids through gymnemagenin in Gymnema sylvestre, materials, extracts and formulations. IJASE 6:1–19

    Google Scholar 

  10. Dave S, Das J, Tarafdar J (2011) Effect of vesicular arbuscular mycorrhizae on growth and saponin accumulation in Chlorophytum borivilianum. Sci Asia 3:165–169

    Article  Google Scholar 

  11. Zubek SS, Mielcarek S, Turnau K (2012) Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22:149–156

    Article  PubMed  CAS  Google Scholar 

  12. Selvaraj T, Mathan N, Rajeshkumar S (2009) Effect of indigenous arbuscular mycorrhizal fungi on some growth parameters and phytochemical constituents of Pogostemon patchouli Pellet. Maejo Int J Sci Technol 3(01):222–234

    CAS  Google Scholar 

  13. Peipp H, Maier W, Schmidt J, Wray V, Strack D (1997) Arbuscular mycorrhizal fungus induced changes in the accumulation of secondary compound in barley roots. Phytochemistry 44(4):581–587

    Article  CAS  Google Scholar 

  14. Kapoor R, Giri B, Mukerji KG (2002) Mycorrhization of coriander (Coriandrum sativum L.) to enhance the concentration and quality of essential oil. J Sci Food Agric 82:339–342

    Article  CAS  Google Scholar 

  15. Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinic concentration in Artemisia annua L. Mycorrhiza 17:581–587

    Article  PubMed  CAS  Google Scholar 

  16. Khaosaad T, Vierheilig H, Nell M, Zitterl- Eglseer K, Novak J (2006) Arbuscular mycorrhiza alters the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446

    Article  PubMed  CAS  Google Scholar 

  17. Toussaint JP (2007) Investigating physiological changes in the aerial parts of AM plants: what do we know and where should we be heading. Mycorrhiza 17:349–353

    Article  PubMed  Google Scholar 

  18. Toussaint JP, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297

    Article  PubMed  CAS  Google Scholar 

  19. Ceccarelli N, Curadi M, Martelloni L, Sbrana C, Picciarelli P, Giovannetti M (2010) Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 335:311–323

    Article  CAS  Google Scholar 

  20. Abu-Zeyad R, Khan C, Khoo C (1999) Occurrence of arbuscular mycorrhiza in Castanospermum austral A. Cunn. & C. fraser and effects on growth and production of castanospermine. Mycorrhiza 9:111–117

    CAS  Google Scholar 

  21. Rojas-Andrade R, Cerda-Garcia-Rojas CM, Frias-Hernández JT, Dendooven L, Olalde- Portugal V, Ramos- Valdivia AC (2003) Changes in the concentration of trigonelline in a semi-arid leguminous plant (Prosopis laevigata) induced by an arbuscular mycorrhizal fungus during the presymbiotic phase. Mycorrhiza 13:49–52

    Article  PubMed  CAS  Google Scholar 

  22. Maier W, Hammer K, Dammann U, Schulz B, Strack D (1997) Accumulation of sesquiterpenoid cyclohexenone derivatives induced by an arbuscular mycorrhizal fungus in members of the Poaceae. Planta 202:36–42

    Article  CAS  Google Scholar 

  23. Maier W, Schmidt J, Wray V, Walter MH, Strack D (1999) The arbuscular mycorrhizal fungus, Glomus intraradices, induces the accumulation of cyclohexenone derivatives in tobacco roots. Planta 207:620–623

    Article  CAS  Google Scholar 

  24. Fester T, Maier W, Strack D (1999) Accumulation of secondary compounds in barley and wheat roots in response to inoculation with an arbuscular mycorrhizal fungus and co-inoculation with rhizosphere bacteria. Mycorrhiza 8:241–246

    Article  CAS  Google Scholar 

  25. Akiyama K, Hayashi H (2002) Arbuscular mycorrhizal fungus promoted accumulation of two new triterpenoids in cucumber roots. Biosci Biotechnol Biochem 66:762–769

    Article  PubMed  CAS  Google Scholar 

  26. Jurkiewicz A, Ryszka P, Anielska T, Waligorski P, Bailonska D, Goralska K, Tsimilli- Michael M, Turnau K (2010) Optimization of culture conditions of Arnica montana L.: effects of mycorrhizal fungi and competing plants. Mycorrhiza 20:293–306

    Article  PubMed  Google Scholar 

  27. Ledig FT, Perry TO (1966) Physiological genetics of the shoot–root ratio. In: Proceedings of the Society of American Foresters. Society of American Foresters, Washington DC, pp 39–43

  28. Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RD, Pringle A, Zabinski C, Klironomos JN, Umbanhowar J (2010) A meta-analysis of context dependency in plant response to inoculations with mycorrhizal fungi. Ecol Lett 13:394–407

    Article  PubMed  Google Scholar 

  29. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Elsevier Science, New York 605

    Google Scholar 

  30. Cox G, Sanders F, Wild J (1995) Ultra structural evidence relating to host-endophyte transfer in vesicular-arbuscular mycorrhiza. In: Sander FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, New York, pp 297–312

    Google Scholar 

  31. George E (2000) Nutrient uptake: contribution of arbuscular mycorrhizal fungi to plant mineral nutrition. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhiza physiology and function. Kluwer, Dordrecht, pp 307–343

    Chapter  Google Scholar 

  32. Fontana A, Reichelt M, Hempel S, Gershenzon J, Unsicker S (2009) The Effects of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of Plantago lanceolata L. J Chem Ecol 35:833–843

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge DST-PURSE, DRS-SAP III for their financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nutan P. Malpathak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimare, S.B., Borde, M.Y., Jite, P.K. et al. Effect of AM Fungi (Gf, Gm) on Biomass and Gymnemic Acid Content of Gymnema sylvestre (Retz.) R. Br. ex Sm.. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 83, 439–445 (2013). https://doi.org/10.1007/s40011-013-0159-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-013-0159-9

Keywords

Navigation