Nanostructured Metal Oxides: Low Temperature Synthesis and Biomimetic Approaches

  • Sunkara V. Manorama
  • Pratyay Basak
  • Rohit Kumar Rana
  • M. Lakshmi Kantam


The last few decades have seen tremendous explosion of activity in the area of Nanoscience and Nanotechnology. Semiconducting metal oxides and their composites form an important class of materials for the envisaged cutting edge applications. Several approaches have been attempted by researchers to prepare nanocrystalline metal oxides, study the material properties and explore their feasibility for a variety of applications. In this review, the highlights of authors’ research efforts vis-à-vis the global state of nanomaterial research is discussed briefly. A comprehensive outlook on some of the important metal oxides, the various strategies practiced to synthesize them, along with a bird’s eye view of the results, important breakthroughs and achievements in the last decade are briefly discussed.


Nanomaterials Metal oxides Synthesis Low temperature methods Bioinspired Self-assembly Titanium dioxide Ferrites Tin dioxide Silica Zinc oxide 


  1. 1.
    Chikazumi S, Taketomi S, Ukita M, Mizukami M, Miyajima H, Setogawa M, Kurihara Y (1987) Physics of magnetic fluids. J Magn Magn Mater 65:245–251CrossRefGoogle Scholar
  2. 2.
    Lu A-H, Schmidt W, Matoussevitch N, Pnnermann HB, Spliethoff B, Tesche B, Bill E, Kiefer W, SchVth F (2004) Nanoengineering of a magnetically separable hydrogenation catalyst. Angew Chem 43:4303–4306CrossRefGoogle Scholar
  3. 3.
    Tsang SC, Caps V, Paraskevas I, Chadwick D, Thompsett D (2004) Magnetically separable, carbon-supported nanocatalysts for the manufacture of fine chemicals. Angew Chem 43:5645–5649CrossRefGoogle Scholar
  4. 4.
    Tsang SC, Caps V, Paraskevas I, Chadwick D, Thompsett D (2004) Carbon-supported nanocatalysts for the manufacture of fine chemicals. Angew Chem Int Ed 43:5645–5649CrossRefGoogle Scholar
  5. 5.
    Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021PubMedCrossRefGoogle Scholar
  6. 6.
    Mornet S, Vasseur S, Grasset F, Verveka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E (2006) Magnetic nanoparticle design for medical applications. Prog Solid State Chem 34:237–247CrossRefGoogle Scholar
  7. 7.
    Li Z, Wei L, Gao MY, Lei H (2005) One-pot reaction to synthesize biocompatible magnetite nanoparticles. Adv Mater 17:1001–1005CrossRefGoogle Scholar
  8. 8.
    Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun pp 927–934Google Scholar
  9. 9.
    Elliott DW, Zhang W-X (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35:4922–4926PubMedCrossRefGoogle Scholar
  10. 10.
    Takafuji M, Ide S, Ihara H, Xu Z (2004) Preparation of poly(1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal Ions. Chem Mater 16:1977–1983CrossRefGoogle Scholar
  11. 11.
    Beck HP, Eiser W, Haberkorn R (2001) Pitfalls in the synthesis of nanoscaled perovskite type compounds. Part I: Influence of different sol–gel preparation methods and characterization of nanoscaled BaTiO3. J Eur Ceramic Soc 21:687–693CrossRefGoogle Scholar
  12. 12.
    Tang ZX, Sorensen CM, Klabunde KJ, Hadjipanayis GC (1991) Preparation of manganese ferrite fine particles from aqueous solution. J Colloid Interface Sci 146:38–52CrossRefGoogle Scholar
  13. 13.
    Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248CrossRefGoogle Scholar
  14. 14.
    Chen Q, Rondinone AJ, Chakoumakos BC, Zhang JZ (1999) Synthesis of superparamagnetic MgFe2O4 nanoparticles by co-precipitation. J Magn Magn Mater 194:1–7CrossRefGoogle Scholar
  15. 15.
    Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX (2004) Monodisperse MFe2O4 (M = Fe, Co., Mn) nanoparticles. J Am Chem Soc 126:273–279PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang JZ, Wang ZL, Chakoumakos BC, Yin JS (1998) Temperature dependence of cation distribution and oxidation state in magnetic Mn–Fe ferrite nanocrystals. J Am Chem Soc 120:1800–1804CrossRefGoogle Scholar
  17. 17.
    Pillai V, Kumar P, Hou MJ, Ayyub P, Shah DO (1995) Preparation of nanoparticles of Silver-halides, superconductors and magnetic-materials using water-in-oil microemulsions as nano-reactors. Adv Colloid Interface Sci 55:241–269CrossRefGoogle Scholar
  18. 18.
    Pillai V, Shah DO (1996) Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J Magn Magn Mater 163:243–248CrossRefGoogle Scholar
  19. 19.
    Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33–72CrossRefGoogle Scholar
  20. 20.
    Ghosh NN, Pramanik P (2001) Aqueous sol–gel synthesis of nanosized ceramic composite powders with metal-formate precursors. Mat Sci and Eng 16:113–117CrossRefGoogle Scholar
  21. 21.
    Bessekhouad Y, Robert D, Weber JV (2003) Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions. J Photochem Photobiol 157:47–53CrossRefGoogle Scholar
  22. 22.
    Reddy KM, Reddy CVG, Manorama SV (2001) Preparation, characterization, and spectral studies on nanocrystalline anatase TiO2. J Solid State Chem 158:180–186CrossRefGoogle Scholar
  23. 23.
    Zhang H, Banfield JF (2005) Size dependence of the kinetic rate constant for Phase transformation in TiO2 nanoparticles. Chem Mater 17:3421–3425CrossRefGoogle Scholar
  24. 24.
    Tang J, Redl F, Zhu Y, Siegrist T, Brus LE, Steigerwald ML (2005) An organometallic synthesis of TiO2 nanoparticles. Nano Lett 5:543–548PubMedCrossRefGoogle Scholar
  25. 25.
    Davis JT, Rideal EK (1963) Interfacial Phenomena. Academic Press, New YorkGoogle Scholar
  26. 26.
    Iler RK (1982) Silica chemistry. American Chemical Society, WashingtonGoogle Scholar
  27. 27.
    Iler RK (1986) Science of ceramic chemical processing. In: Hench LL, Ulrich DR (eds) Wiley, New YorkGoogle Scholar
  28. 28.
    Makovec D, Drofenik M, Znidarsic A (1999) Hydrothermal synthesis of manganese zinc ferrite powders from oxides. J Am Ceram Soc 82:1113–1120CrossRefGoogle Scholar
  29. 29.
    Lu A-H, Salabas EL, Schiith F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244CrossRefGoogle Scholar
  30. 30.
    Sridhar K, D’Arrigo MC, Leonelli C, Pellacan GC, Katsuki H (1998) Microwave-hydrothermal synthesis of nanophase ferrites. J Am Ceram Soc 81:3041–3043Google Scholar
  31. 31.
    Rozman M, Drofenik M (1995) Hydrothermal synthesis of manganese zinc ferrites. J Am Ceram Soc 78:2449–2455CrossRefGoogle Scholar
  32. 32.
    Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124PubMedCrossRefGoogle Scholar
  33. 33.
    Xu J, Ge JP, Li YD (2006) Solvothermal synthesis of monodisperse PbSe nanocrystals. J Phys Chem 110:2497–2501CrossRefGoogle Scholar
  34. 34.
    Wen B, Liu C, Liu Y (2005) Depositional characteristics of metal coating on single-crystal TiO2 nanowires. J Phys Chem 109:12372–12375CrossRefGoogle Scholar
  35. 35.
    Yang SW, Gao L (2006) Fabrication and shape-evolution of nanostructured TiO2 via a sol–solvothermal process based on benzene–water interfaces. Mater Chem Phys 99:437–440CrossRefGoogle Scholar
  36. 36.
    Song Q, Zhang ZJ (2004) Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc 126:6164–6168PubMedCrossRefGoogle Scholar
  37. 37.
    Suslick KS (1990) Sonochemistry. Science 247:1439–1445PubMedCrossRefGoogle Scholar
  38. 38.
    Suslick KS (1998) Ultrasound: its chemical, physical, and biological effects. Wiley-VCH, New YorkGoogle Scholar
  39. 39.
    Xia H, Wang Q (2002) Ultrasonic irradiation: a novel approach to prepare conductive polyaniline/Nanocrystalline Titanium Oxide Composites. Chem Mater 14:2158–2165CrossRefGoogle Scholar
  40. 40.
    Yu JC, Zhang L, Li Q, Kwong KW, Xu AW, Lin J (2003) Sonochemical preparation of nanoporous composites of Titanium Oxide and Size-Tunable Strontium Titanate Crystals. Langmuir 19:7673–7675CrossRefGoogle Scholar
  41. 41.
    Prozorov T, Prozorov R, Koltypin Y, Felner I, Gendanken A (1998) Sonochemistry under an applied magnetic field: determining the shape of a magnetic particle. J Phys Chem 102:10165–10168CrossRefGoogle Scholar
  42. 42.
    Lei Y, Zhang LD, Fan JC (2001) Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3. Chem Phys Lett 338:231–236CrossRefGoogle Scholar
  43. 43.
    Liu S, Huang K (2004) Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate. Sol Energy Mater Sol Cells 85:125–131Google Scholar
  44. 44.
    Corradi AB, Bondioli F, Focher B, Ferrari AM, Grippo C, Mariani E, Villa C (2005) Conventional and microwave-hydrothermal synthesis of TiO2 nanopowders. J Am Ceram Soc 88:2639–2641CrossRefGoogle Scholar
  45. 45.
    Wu X, Jiang QZ, Ma ZF, Fu M, Shangguan WF (2005) Synthesis of Titania nanotubes by microwave irradiation. Solid State Commun 36:513–517CrossRefGoogle Scholar
  46. 46.
    Yamamoto T, Wada Y, Yin H, Sakata T, Mori H, Yanagida S (2002) Microwave-driven polyol method for preparation of TiO2 nanocrystallites. Chem Lett 10:964–965CrossRefGoogle Scholar
  47. 47.
    O’Regan B, Gra¨tzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  48. 48.
    Fujishima Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1:1–21CrossRefGoogle Scholar
  49. 49.
    Rajh T, Saponjic Z, Liu J, Dimitrijevic NM, Scherer NF, Vega-Arroyo M, Zapol P, Curtiss LA, Thurnauer MC (2004) Charge transfer across the nanocrystalline-DNA interface: probing DNA recognition. Nano Lett 4:1017–1023CrossRefGoogle Scholar
  50. 50.
    Tokuhisa H, Hammond PT (2003) Solid state photovoltaic thin films using TiO2, organic dyes and layer-by-layer polyelectrolyte nanocomposites. Adv Funct Mater 13:831–839CrossRefGoogle Scholar
  51. 51.
    Gerfin T, Gra¨tzel M, Walder L (1997) Molecular and supermolecular surface modification of nanocrystalline TiO2 films: charge separating and charge injecting devices. In: Karlin KD (eds) John Wiley and Sons Inc., New York pp 345–353Google Scholar
  52. 52.
    Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93:267–300CrossRefGoogle Scholar
  53. 53.
    Wells F (1975) Structural inorganic chemistry. Clarendon Press, OxfordGoogle Scholar
  54. 54.
    Kormann C, Bahnemann DW, Hoffmann MR (1988) Preparation and characterization of quantum-size titanium dioxide. J Phys Chem 92:5196–5201CrossRefGoogle Scholar
  55. 55.
    Prasad K, Bally AR, Schmid PE, Levy F, Benoit J, Barthou C, Benalloul JP (1997) Ce-doped TiO2 insulators in thin film electroluminescent devices. J Appl Phys 36:5696–5702CrossRefGoogle Scholar
  56. 56.
    Kim S, Park S, Jeong YH (1999) Homogeneous precipitation of TiO2 ultrafine powders from aqueous TiOCl2 solution. J Am Ceram Soc 82:927–932CrossRefGoogle Scholar
  57. 57.
    Wang W, Gu B, Liang L, Hamilton WA, Wesolowski DJ (2004) Synthesis of rutile (α-TiO2) nanocrystals with highly controlled size and shape by low temperature hydrolysis: effects of solvent composition. J Phys Chem 108:14789–14792CrossRefGoogle Scholar
  58. 58.
    Visca M, Matijevic′ EJ (1979) Preparation of uniform colloidal dispersions by chemical reactions in aerosols. I. Spherical particles of titanium dioxide. J Colloid Interface Sci 68:308–319CrossRefGoogle Scholar
  59. 59.
    Park HK, Moon YT, Kim DK, Kim CH (1996) Formation of monodisperse spherical TiO2 powders by thermal hydrolysis of Ti(SO4)2. J Am Ceram Soc 79(10):2727–2732CrossRefGoogle Scholar
  60. 60.
    Barringer EA, Bowen HK (1998) High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical properties. Langmuir 1:414–420CrossRefGoogle Scholar
  61. 61.
    Zhang H, Banfield JF (2000) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem 104:3481–3487Google Scholar
  62. 62.
    Wu MM, Lin G, Chen DH, Wang GG, He D, Feng SH, Xu RR (2002) Sol-hydrothermal synthesis and hydrothermally structural evolution of nanocrystal Titanium Dioxide. Chem Mater 14(5):1974–1980CrossRefGoogle Scholar
  63. 63.
    Zhang Q-H, Gao L, Guo J-K (1999) Preparation and characterization of nanosized TiO2 powders from aqueous TiCl4 solution. Nanostruct Mater 11:1293–1300CrossRefGoogle Scholar
  64. 64.
    Cavani F, Foresti E, Parrinello F, Trifiro F (1988) Role of the chemistry of solutions of titanium ions in determining the structure of V/Ti/O catalysts. Appl Catal 38:311–325CrossRefGoogle Scholar
  65. 65.
    Kumar K-NP, Keizer K, Burggraaf A (1992) Densification of nanostructured titania assisted by a phase transformation. Nature 358:48–51CrossRefGoogle Scholar
  66. 66.
    Manuel O, Josev GR, Carlos S (1992) Low-temperature nucleation of rutile observed by Raman Spectroscopy during crystallization of TiO2. J Am Ceram Soc 75:2010–2012CrossRefGoogle Scholar
  67. 67.
    Kumar K-NP, Keizer K, Burggraaf AJ (1994) Stabilization of the porous texture of nanostructured Titania by avoiding a phase transformation. J Mater Sci Lett 13:59–61Google Scholar
  68. 68.
    Luo H, Wang C, Yan Y (2003) Synthesis of mesostructured Titania with controlled crystalline framework. Chem Mater 15:3841–3846CrossRefGoogle Scholar
  69. 69.
    Liu W, Chen A, Lin J, Dai Z, Qiu W, Liu W, Zhu M, Usuday S (2004) Preparation of controllable crystalline Nano-TiO2 by homogeneous hydrolysis. Chem Lett 33:390–391CrossRefGoogle Scholar
  70. 70.
    Yin S, Li R, He Q, Sato T (2002) Low temperature synthesis of nanosize rutile Titania crystal in liquid media. Mater Chem Phys 75:76–80CrossRefGoogle Scholar
  71. 71.
    Chu R, Yan J, Lian S, Wang Y, Yan F, Chen D (2004) Shape-controlled synthesis of nanocrystalline Titania at low temperature. Solid State Commun 130:789–792CrossRefGoogle Scholar
  72. 72.
    Yin S, Hasegawa H, Maeda D, Ishitsuka M, Sato T (2004) Synthesis of visible-light-active nanosize rutile Titania photocatalyst by low temperature dissolution–reprecipitation process. J Photochem Photobiol A Chem 163:1–8CrossRefGoogle Scholar
  73. 73.
    Aruna ST, Tirosh S, Zaban AJ (2000) Nanosize rutile Titania particle synthesis via a hydrothermal method without mineralizers. J Mater Chem 10:2388–2391CrossRefGoogle Scholar
  74. 74.
    Zhang Q, Gao L (2003) Preparation of oxide nanocrystals with tunable morphologies by the moderate hydrothermal method: insights from Rutile TiO2. Langmuir 19:967–971CrossRefGoogle Scholar
  75. 75.
    Pedraza F, Vazquez A (1999) Obtention of TiO2 rutile at room temperature through direct Oxidation of TiCl3. J Phys Chem Solids 60:445–448CrossRefGoogle Scholar
  76. 76.
    Yang J, Mei S, Ferreira JMF (2000) Hydrothermal synthesis of nanosized Titania powders: influence of peptization and peptizing agents on the crystalline phases and phase transitions. J Am Ceram Soc 83:1361–1368CrossRefGoogle Scholar
  77. 77.
    Cheng H, Ma J, Zhou Z, Qi L (1995) Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem Mater 7:663–671CrossRefGoogle Scholar
  78. 78.
    Bacsa RR, Gra¨tzel M (1996) Rutile formation in hydrothermally crystallized nanosized Titania. J Am Ceram Soc 79:2185–2188CrossRefGoogle Scholar
  79. 79.
    Wang C-C, Ying JY (1999) Sol–Gel synthesis and hydrothermal porocessing of anatase and rutile Titania nanocrystals. Chem Mater 11:3113–3120CrossRefGoogle Scholar
  80. 80.
    Sasamoto T, Enomoto S, Shimoda Z, Saeki Y (1993) Effect of hydrolysis conditions on thermal transformation of alkoxide-derived titanium dioxide. J Ceram Soc 101:230–232CrossRefGoogle Scholar
  81. 81.
    Park N-G, Schlichtho¨rl G, van de Lagemaat J, Cheong HM, Mascarenhas A, Frank J (1999) Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4. J Phys Chem 103:3308–3314CrossRefGoogle Scholar
  82. 82.
    Nag M, Basak P, Manorama SV (2007) Low-temperature hydrothermal synthesis of phase-pure rutile titania nanocrystals: time temperature tuning of morphology and photocatalytic activity. Mater Res Bull 42(9):1691–1704CrossRefGoogle Scholar
  83. 83.
    Nag M, Guin D, Basak P, Manorama SV (2008) Influence of morphology and surface characteristics on the photocatalytic activity of Rutile Titania Nanocrystals. Mater Res Bull 43(12):3270–3285CrossRefGoogle Scholar
  84. 84.
    Chen X, Gu G, Liu H, Cao Z (2004) Synthesis of nanocrystalline TiO2 particles by hydrolysis of Titanyl organic compounds at low temperature. J Am Ceram Soc 87:1035–1039CrossRefGoogle Scholar
  85. 85.
    Yang S, Liu Y, Guo Y, Zhao J, Xu H, Wang Z (2002) Preparation of rutile Titania nanocrystals by liquid method at room temperature. Mater Chem Phys 77:501–507CrossRefGoogle Scholar
  86. 86.
    Yin H, Wada Y, Kitamura T, Kambe S, Murasawa S, Mori H, Sakata T, Yanagida S (2001) Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2. J Mater Chem 11:1694–1703CrossRefGoogle Scholar
  87. 87.
    Li WJ, Shi EW, Zhong WZ, Yin ZW (1999) Growth mechanism and growth habit of oxide crystals. J Cryst Growth 203(1–2):186–196CrossRefGoogle Scholar
  88. 88.
    Dube GR, Darshana VS (1993) Decomposition of 1-octanol on the spinel system Ga1−x FexCuMnO4. J Mol Catal 79:285–296CrossRefGoogle Scholar
  89. 89.
    Rennard RJ, Kehl WL (1971) Oxidative dehydrogenation of butenes over ferrite catalysts. J Catal 21:282–293CrossRefGoogle Scholar
  90. 90.
    Zhihao Y, Zhang L (1998) Synthesis and structural characterization of capped ZnFe2O4 nanoparticles. Mat Res Bull 33:1587–1592CrossRefGoogle Scholar
  91. 91.
    Zhang T, Shen Y, Zhang R (1995) Ilmenite structure-type Beta-CdSnO used as an ethanol sensing. Material Mat Letts 23:69–71CrossRefGoogle Scholar
  92. 92.
    Yamazoe N, Miura N (1992) Some basic aspects of semiconductor gas sensors in chemical sensor technology. Kodansha and Elsevier, TokyoGoogle Scholar
  93. 93.
    Holtz RL, Provenzano V, Imam MA (1996) Overview of nanophase metals and alloys for gas sensors, getters, and hydrogen storage. Nanostruct Mater 7:259–264CrossRefGoogle Scholar
  94. 94.
    Waingankar US, Kulkarni SG, Sagare MS (1997) Humidity sensing using soft ferrites. J Phy pp 155–156Google Scholar
  95. 95.
    Arai H, Seiyama T (1991) Sensors: a comprehensive survey. In: Gopel W, Hesse J, Zemal JN (eds) Vct verlag spesell schaft. Wen-heim, WeinheimGoogle Scholar
  96. 96.
    Liu XQ, Xu ZL, Liu YF, Shen YS (1998) A novel high performance ethanol gas sensor based on CdO-Fe2O3 semiconducting materials. Sensor Actuat B-Chem 52(3):270–273CrossRefGoogle Scholar
  97. 97.
    Liu XQ, Fang B, Gao F (1999) The electrical conductance and gas-sensing properties of Sb-modified CdFe2O4 semiconductor material. Sensor Actuat B-Chem 61:138–142CrossRefGoogle Scholar
  98. 98.
    Reddy CVG, Manorama SV, Rao VJ (1999) Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite. Sensor Actuat B-Chem 55:90–95CrossRefGoogle Scholar
  99. 99.
    Reddy CVG, Manorama SV, Rao VJ (2000) Preparation and characterization of ferrites as gas sensor materials. J Mat Sci Letts 19:775–778CrossRefGoogle Scholar
  100. 100.
    Tao S, Gao F, Liu X, Sorensen OT (2000) Preparation and gas-sensing properties of CuFe2O4 at reduced temperature. Mat Sci and Engg B 77:172–176CrossRefGoogle Scholar
  101. 101.
    Xiangfeng C, Liu X, Guangyo M (1999) Study on gas-sensing properties of Cd1-xAgxIn2O4 semiconductor materials. Sensor Actuat B-Chem 55:19–22CrossRefGoogle Scholar
  102. 102.
    Xiangdong L, Shuping L, Dongyang S, Wenfei C (2007) Ethanol-sensing characteristics of CdFe2O4 sensor prepared by sol–gel method. Mater Chem Phys 105(1):67–70CrossRefGoogle Scholar
  103. 103.
    Chen N-S, Yang X-J, Liu E-S, Huang J-L (2000) Reducing gas-sensing properties of ferrite compounds MFe2O4 (M = Cu, Zn, Cd and Mg). Sensor Actuat B-Chem 66:178–180CrossRefGoogle Scholar
  104. 104.
    Shafi Kurikka VPM, Koltypin Y, Gedanken A, Prozorou R, Balogh J, Lendvai J, Felner I (1997) Sonochemical preparation of nanosized amorphous NiFe2O4 particles. J Phys Chem 101:6409–6414CrossRefGoogle Scholar
  105. 105.
    Turner CW (1991) Sol-gel process–principles applications. Am Ceram Soc Bull 70:1487–1490Google Scholar
  106. 106.
    Ataie A, Piramoon MR, Harris IR, Ponton CB (1995) Effect of Hydrothermal synthesis environment on the particle morphology, chemistry and magnetic-properties of barium hexaferrite. J Mater Sci 30:5600–5606CrossRefGoogle Scholar
  107. 107.
    Adachi GY, Imanaka N (1998) The binary rare earth oxides. Chem Rev 98:1479–1541CrossRefGoogle Scholar
  108. 108.
    Somiya S, Roy B (2000) Hydrothermal synthesis of fine oxide powders. Bull Mater Sci 23:453–460CrossRefGoogle Scholar
  109. 109.
    Ravindranathan P, Patil K (1987) Low-temperature path to the preparation of ultrafine ferrites. Am Cer Soc Bull 66:688–692Google Scholar
  110. 110.
    Regazzoni E, Urutia GA, Blesa MA, Maroto AJG (1981) Some observations on the composition and morphology of synthetic magnetites obtained by different routes. J Inorg Nucl Chem 43:1489–1493CrossRefGoogle Scholar
  111. 111.
    Chen J, Brinder K, Winzer SR, Paivernerker V (1988) A novel low-temperature preparation of Ni-Zn ferrite and the properties of the ultrafine particles formed. J Appl Phys 63:3786–3788CrossRefGoogle Scholar
  112. 112.
    Ueda M, Shimada S, Inagaki M (1995) Low temperature synthesis of zinc ferrite using hydrazine monohydrate. J Euro Cera Soc 15:265–269CrossRefGoogle Scholar
  113. 113.
    Reddy CVG, Kalyana Seela K, Manorama SV (2000) Preparation of gamma-Fe2O3 by the hydrazine method: application as an alcohol sensor. Int J Inorg Mat 12:301–307CrossRefGoogle Scholar
  114. 114.
    Reddy CVG, Cao W, Tan OK, Zhu W (2002) Preparation of Fe2O3 (0.9)-SnO2 (0.1) by hydrazine method: application as an alcohol sensor. Sensor Actuat B-Chem 81:170–175CrossRefGoogle Scholar
  115. 115.
    Mukhopadhyay AK, Mitra P, Chatterjee AP, Maiti HS (2000) Tin dioxide thin film gas sensor. Ceram Int 26:123–132CrossRefGoogle Scholar
  116. 116.
    Matsushima S, Teraoka Y, Miura N, Yamazoe N (1988) Electronic interaction between metal additives and tin dioxide in tin dioxide based gas sensors. Jpn J Appl Phys 27:1798–1802CrossRefGoogle Scholar
  117. 117.
    Ogawa H, Abe A, Nishikawa M, Hayakawa S (1981) Electrical properties of tin oxide ultrafine particle films. J Electrochem Soc 128:2020–2025CrossRefGoogle Scholar
  118. 118.
    Shukla S, Patil S, Kuiry SC, Rahamn Z, Du T, Ludwig L, Parish C, Seal S (2003) Synthesis and characterization of sol-gel derived nanocrystalline tin oxide thin film as hydrogen sensor. Sensor Actuat B-Chem 96:343–353CrossRefGoogle Scholar
  119. 119.
    Chopra KL, Major S, Pandya DK (1983) Transparent conductors: a status review. Thin Solid Films 102:1–46CrossRefGoogle Scholar
  120. 120.
    Zhang Y, Hu Q, Hu B, Fang Z, Qian Y, Zhang Z (2006) Preparation, characterization and application of a new kind of mesoporous composite. Mater Chem Phys 96:16–21CrossRefGoogle Scholar
  121. 121.
    Choudhary TV, Goodman DW (2002) Oxidation catalysis by supported gold nanoclusters. Top Catal 21:25–34CrossRefGoogle Scholar
  122. 122.
    Cebolla VC, Bacaud R, Besson M, Cagniant D, Charcosset H, Oberson M (1987) Analytical methods for the study of the influence of catalysts on the nature of liquefaction products of a bituminous coal. Bull Soc Chim Fr 6:935Google Scholar
  123. 123.
    Harrison PG, Bailey C, Bowering N (2003) Evolution of microstructure during the thermal processing of manganese-promoted Tin(IV) oxide catalysts. Chem Mater 15:979–987CrossRefGoogle Scholar
  124. 124.
    Ekerdt JG, Klabunde KJ, Shapley JR, White JM, Yates JT (1988) Surface chemistry of organophosphorus compounds. J Phys Chem 92:6182–6188CrossRefGoogle Scholar
  125. 125.
    Ginley DS, Bright C (2000) Transparent conducting oxides. Mater Res Soc Bull 25:15–18CrossRefGoogle Scholar
  126. 126.
    Granqvist CG (1993) Transparent conductive electrodes for electrochromic devices: a review. Appl Phys A Mater Sci Process 57:19–24CrossRefGoogle Scholar
  127. 127.
    Robert JC (1996) Method for preparing particles of metal oxide. (Tin Oxide). US Patent 5494652, USAGoogle Scholar
  128. 128.
    Bellingham JR, Philips WA, Adkins CJ (1992) Intrinsic performance limits in transparent conducting oxides. J Mater Sci Lett 11:263–265CrossRefGoogle Scholar
  129. 129.
    Haa HW, Kima K, de Borniol M, Toupance T (2006) Fluorine-doped nanocrystalline SnO2 powders prepared via a single molecular precursor method as anode materials for Li-ion batteries. J Solid State Chem 179:702–707CrossRefGoogle Scholar
  130. 130.
    Chaudhary VA, Mulla IS, Vijayamohanan K, Hegde SG, Srinivas D (2001) Hydrocarbon sensing mechanism of surface ruthenated Tin Oxide: an in situ IR, ESR, and adsorption kinetics study. J Phys Chem 105:2565–2571CrossRefGoogle Scholar
  131. 131.
    Robert WJS, Yang SM, Chabanis G, Coombs N, Williams DE, Ozin GA (2001) Tin dioxide opals and inverted opals: near-ideal microstructures for gas sensors. Adv Mater 13:1468–1472CrossRefGoogle Scholar
  132. 132.
    Davis SR, Chadwick AV, Wright JD (1998) The effects of crystallite growth and dopant migration on the carbon monoxide sensing characteristics of nanocrystalline tin oxide based sensor materials. J Mater Chem 8:2065–2071CrossRefGoogle Scholar
  133. 133.
    Kılıc C, Zunger A (2002) Origins of coexistence of conductivity and transparency in SnO2. Phys Rev Lett 88(1–4):095501–095505PubMedCrossRefGoogle Scholar
  134. 134.
    Yamazoe N, Miura N (1992) Some basic aspect of semiconductor gas sensors. Chem Sens Technol 4:19–42Google Scholar
  135. 135.
    Xu C, Tamaki J, Miura N, Yamazoe N (1992) Stabilization of SnO2 ultrafine particles by additives. J Mater Sci 27:963–971CrossRefGoogle Scholar
  136. 136.
    Xu C, Tamaki J, Miura N, Yamazoe N (1991) Grain size effects on gas sensitivity of porous SnO2-based elements. Sensor Actuat B-Chem 3:147–155CrossRefGoogle Scholar
  137. 137.
    Comini E, Faglia G, Sberveglieri G, Pan Z, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81:1869–1871CrossRefGoogle Scholar
  138. 138.
    Chowdhuri A, Gupta V, Sreenivas K, Kumar R, Mozumdar S, Patanjali PK (2004) Response speed of SnO2-based H2S gas sensors with CuO nanoparticles. Appl Phys Lett 84:1180–1182CrossRefGoogle Scholar
  139. 139.
    Wang Y, Jiang X, Xia Y (2003) A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J Am Chem Soc 125:16176–16177PubMedCrossRefGoogle Scholar
  140. 140.
    Liu Y, Koep E, Liu M (2005) A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapour deposition. Chem Mater 17:3997–4000CrossRefGoogle Scholar
  141. 141.
    Wang X, Yee SS, Carey WP (1995) Transition between neck-controlled and grain-boundary-controlled sensitivity of metal-oxide gas sensors. Sensor Actuat B-Chem 25:454–457CrossRefGoogle Scholar
  142. 142.
    Zhang G, Liu ML (2000) Effect of particle size and dopant on properties of SnO2-based gas sensors. Sensor Actuat B-Chem 69:144–152CrossRefGoogle Scholar
  143. 143.
    Wang HC, Li Y, Yang MJ (2006) Fast response thin film SnO2 gas sensors operating at room temperature. Sensor Actuat B-Chem 119:380–383CrossRefGoogle Scholar
  144. 144.
    Chen YJ, Nie L, Xue XY, Wang YG, Wang TH (2006) Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity. Appl Phys Lett 88:083105CrossRefGoogle Scholar
  145. 145.
    Manjula P, Satyanarayana L, Swarnalatha Y, Manorama SV (2009) Raman and MASNMR studies to support the mechanism of low temperature hydrogen sensing by Pd doped mesoporous SnO2. Sensor Actuat B-Chem 138:28–34CrossRefGoogle Scholar
  146. 146.
    Micocci G, Serra A, Siciliano P, Tepore A, Ali-Adib Z (1996) CO sensing characteristics of reactively sputtered SnO2 thin films prepared under different oxygen partial pressure values. Vacuum 47:1175–1177CrossRefGoogle Scholar
  147. 147.
    Geoffroy C, Campet G, Menil F, Portier J, Salardenne J, Couturier G (1991) Optical and electrical properties of SnO:F thin films obtained by R.F. sputtering with various targets. Act Passive Elec Comput 14:111–118CrossRefGoogle Scholar
  148. 148.
    Demarne V, Grisel A (1993) A new SnO2 low temperature deposition technique for integrated gas sensors. Sensor Actuat B-Chem 15:63–67CrossRefGoogle Scholar
  149. 149.
    Jiang L, Sun G, Zhou Z, Sun S, Wang Q, Yan S, Li H, Tian J, Guo J, Zhou B, Xin Q (2005) Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocatalysts. J Phys Chem 109:8774–8778Google Scholar
  150. 150.
    Suh S, Zhang Z, Chu W-K, Hoffmann DM (1999) Atmospheric-pressure chemical vapor deposition of fluorine-doped tin oxide thin films. Thin Solid Films 345:240–243CrossRefGoogle Scholar
  151. 151.
    Park SH, Son YC, Willis WS, Suib SL, Creasy KE (1998) Tin oxide films made by physical vapor deposition-thermal oxidation and spray pyrolysis. Chem Mater 10:2389–2398CrossRefGoogle Scholar
  152. 152.
    Shanthi S, Subramanian C, Ramasamy P (1999) Preparation and properties of sprayed undoped and fluorine doped tin oxide films. Mater Sci Eng, B 57:127–134CrossRefGoogle Scholar
  153. 153.
    Nayral C, Ould-Ely T, Maisonnat A, Chaudret B, Fau P, Lescouze`re L, Peyre-Lavigne A (1999) A novel mechanism for the synthesis of Tin/Tin oxide nanoparticles of low size dispersion and of nanostructured SnO2 for the sensitive layers of gas sensors. Adv Mater 11:61–63CrossRefGoogle Scholar
  154. 154.
    Nakamoto M, Yamamoto M (2004) Tin oxide and indium oxide nanoparticles prepared by the controlled thermolysis of tin and indium complexes. Kagaku Kogyo 78:503–508Google Scholar
  155. 155.
    Briois V, Belin S, Chalaca MZ, Santos RHA, Santilli CV, Pulcinelli SH (2004) Solid-State and solution structural study of acetylacetone-modified Tin(IV) chloride used as a precursor of SnO2 nanoparticles prepared by a Sol–Gel route. Chem Mater 16:3885–3894CrossRefGoogle Scholar
  156. 156.
    Zhu J, Lu Z, Aruna ST, Aurbach D, Gedanken A (2000) Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as li insertion electrodes. Chem Mater 12:2557–2566CrossRefGoogle Scholar
  157. 157.
    Shen E, Wang C, Wang E, Kang Z, Gao L, Hu C, Xu L (2004) PEG-assisted synthesis of SnO2 nanoparticles. Mater Lett 58:3761–3764CrossRefGoogle Scholar
  158. 158.
    Chen D, Gao L (2004) Novel synthesis of well-dispersed crystalline SnO2 nanoparticles by water-in-oil microemulsion-assisted hydrothermal process. J Colloid Interface Sci 279:137–142PubMedCrossRefGoogle Scholar
  159. 159.
    Kröger N, Lorenz S, Brunner E, Sumper M (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298:584–586PubMedCrossRefGoogle Scholar
  160. 160.
    Poulsen N, Sumper M, Kröger N (2003) Biosilica formation in diatoms: characterization of native silaffin-2 and its role in silica morphogenesis. Proc Natl Acad Sci USA 100:12075–12080PubMedCrossRefGoogle Scholar
  161. 161.
    Cha JN, Shimizu K, Zhou Y, Christiansen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicate in filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365PubMedCrossRefGoogle Scholar
  162. 162.
    Mizutani T, Nagase H, Ogoshi H (1998) Silicic acid polymerization catalyzed by amines and polyamines. Chem Lett 27:133–134CrossRefGoogle Scholar
  163. 163.
    Coradin T, Durupthy O, Livage J (2002) Interactions of amino-containing peptides with sodium silicate and colloidal silica: a biomimetic approach of silicification. Langmuir 18:2331–2336CrossRefGoogle Scholar
  164. 164.
    Patwardhan SV, Clarson SJ (2003) Silicification and biosilicification: Part 5. An investigation of the silica structures formed at weakly acidic pH and neutral pH as facilitated by cationically charged macromolecules. Mater Sci Engin C 23:495–499CrossRefGoogle Scholar
  165. 165.
    Hawkins KM, Wang SS-S, Ford DM, Shantz DF (2004) Poly-l-lysine templated silicas: using polypeptide secondary structure to control oxide pore architectures. J Am Chem Soc 126:9112–9119PubMedCrossRefGoogle Scholar
  166. 166.
    Begum G, Rana RK, Singh S, Satyanarayana L (2010) Bioinspired silicification of functional materials: fluorescent monodisperse mesostructure silica nanospheres. Chem Mater 22:551–556CrossRefGoogle Scholar
  167. 167.
    Rana RK, Murthy VS, Yu J, Wong MS (2005) Nanoparticle self-assembly of hierarchically ordered microcapsule structures. Adv Mater 17:1145–1150CrossRefGoogle Scholar
  168. 168.
    Han Y, Ying JY (2005) Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticles with various mesoporous structures. Angew Chem Int Ed 44:288–292CrossRefGoogle Scholar
  169. 169.
    Suzuki K, Ikari K, Imai H (2004) Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system. J Am Chem Soc 126:462–463PubMedCrossRefGoogle Scholar
  170. 170.
    Nooney RI, Thirunavukkarasu D, Chen Y, Josephs R, Ostafin AE (2002) Synthesis of nanoscale mesoporous silica spheres with controlled particle size. Chem Mater 14:4721–4728CrossRefGoogle Scholar
  171. 171.
    Rana RK, Mastai Y, Gedanken A (2002) Acoustic cavitation leading to the morphosynthesis of mesoporous silica vesicles. Adv Mater 14:1414–1418CrossRefGoogle Scholar
  172. 172.
    Umetsu M, Mizuta M, Tsumoto K, Ohara S, Takami S, Watanabe H, Kumagai I, Adschiri T (2005) Bioassisted room-temperature immobilization and mineralization of zinc Oxide-the structural ordering of ZnO nanoparticles into a flower-type morphology. Adv Mater 17:2571–2575CrossRefGoogle Scholar
  173. 173.
    Begum G, Manorama SV, Singh S, Rana RK (2008) Morphology-controlled assembly of ZnO nanostructures: a bioinspired method and visible luminescence. Chem Eur J 14:6421–6427PubMedCrossRefGoogle Scholar
  174. 174.
    Dickerson MB, Naik RR, Stone MO, Cai Y, Sandhage KH (2004) Identification of peptides that promote the rapid precipitation of germania nanoparticle networks via use of a peptide display library. Chem Commun 15:1776–1777CrossRefGoogle Scholar
  175. 175.
    Naik RR, Brott LL, Clarson SJ, Stone MO (2002) Silica- precipitating peptides isolated from a combinatorial phage display peptide library. J Nanosci Nanotechnol 1:95–100CrossRefGoogle Scholar
  176. 176.
    Dickerson MB, Cai Y, Sandhage KH, Naik RR, Stone MO (2005) Sequence specific morphological control over the formation of germanium oxide during peptide mediated synthesis. Ceram Eng Sci Proc 26:25–32CrossRefGoogle Scholar
  177. 177.
    Patwardhan SV, Clarson SJ (2005) Bioinspired mineralisation: macromolecule mediated synthesis of amorphous germania structures. Polymer 46:4474–4479CrossRefGoogle Scholar
  178. 178.
    Davis TM, Snyder MA, Tsapatsis M (2007) Germania nanoparticles and nanocrystals at room temperature in aqueous lysine Sols. Langmuir 23:12469–12472PubMedCrossRefGoogle Scholar
  179. 179.
    Sumerel JL, Yang W, Kisailus D, Weaver JC, Choi JH, Morse DE (2003) Biocatalytically templated synthesis of Titanium Dioxide. Chem Mater 15:4804–4809CrossRefGoogle Scholar
  180. 180.
    Kisailus D, Choi JH, Weaver JC, Yang W, Morse DE (2005) Enzymatic synthesis and nanostructural control of gallium oxide at low temperature. Adv Mater 17:314–318CrossRefGoogle Scholar
  181. 181.
    Lee S-Y, Gao X, Matsui H (2007) Biomimetic and aggregation-driven crystallization route for room-temperature material synthesis: Growth of β-Ga2O3 nanoparticles on peptide assemblies as nanoreactors. J Am Chem Soc 129:2954–2958PubMedCrossRefGoogle Scholar
  182. 182.
    Amali AJ, Rana RK (2008) Trapping Pd(0) in nanoparticle-assembled microcapsules: an efficient and reusable catalyst. Chem Commun 4165–4167Google Scholar
  183. 183.
    Shah MSAS, Nag M, Kalagara T, Singh S, Manorama SV (2008) Silver on PEG-PU-TiO2 polymer nanocomposite films: an excellent system for antibacterial applications. Chem Mater 20:2455–2460CrossRefGoogle Scholar
  184. 184.
    Jianrong C, Yuqing M, Nongyue H, Xiaohua W, Sijao L (2004) Nanotechnology and biosensors. Biotech Adv 22:505–518CrossRefGoogle Scholar
  185. 185.
    Vijayalakshmi A, Tarunashree Y, Baruwati B, Manorama SV, Narayana BL, Johnson REC, Rao NM (2008) Enzyme field effect transistor (ENFET) for estimation of triglycerides using magnetic nanoparticles. Biosens Bioelectron 23:1708–1714PubMedCrossRefGoogle Scholar
  186. 186.
    Guin D, Manorama SV (2008) Room temperature synthesis of monodispersed iron oxide nanoparticles. Mat Lett 62:3139–3142CrossRefGoogle Scholar
  187. 187.
    Begum G, Singh S, Rangaraj N, Srinivas G, Rana RK (2010) Cellular permeation with nuclear infiltration capability of biomimetically synthesised fluorescent monodisperse mesoporous silica nanospheres in HeLa and human stem cells. J Mater Chem 20:8563–8570CrossRefGoogle Scholar
  188. 188.
    Feynmann R (1960) There’s plenty of room at the bottom. Engg Sci 23:22–36Google Scholar

Copyright information

© The National Academy of Sciences, India 2012

Authors and Affiliations

  • Sunkara V. Manorama
    • 1
  • Pratyay Basak
    • 1
  • Rohit Kumar Rana
    • 1
  • M. Lakshmi Kantam
    • 1
  1. 1.Inorganic and Physical Chemistry DivisionCSIR-Indian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations