Skip to main content

Advertisement

Log in

Micro Mineral Nutrient Deficiencies in Humans, Animals and Plants and Their Amelioration

  • Review
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Six micro mineral nutrients (MMNs), namely, Fe, Zn, Mn, Cu, B and Mo are common essential nutrients in plants, animals and humans. Of these, the deficiencies of Fe and Zn in humans and that of Zn, Mn and Cu in animals are widespread. About one-third of the world human population, mostly in developing countries, is prone to Fe and Zn malnutrition. The clinical symptoms of Fe deficiency in humans include anaemia, fatigue, dizziness, reduced intellectual progress and reduced work capacity. Clinical symptoms of Zn deficiency in humans include diarrhoea, pneumonia in infants and growth retardation in children. There are two approaches for the amelioration of Fe and Zn deficiency, namely, nutraceutical and biofortification. Nutraceutical approach includes pharmaceutical or dietary Fe/Zn supplementation or diet diversification. Biofortification of cereal grains or other foods can be achieved genetically or agronomically. A number of projects for genetic biofortification of a number of food crops, such as, rice, wheat, maize, cassava and sweet potato etc. are underway globally. So far only two cultivars have become available for cultivation. These are Vitamin A rich orange-flesh sweet potato and Vitamin A and Fe rich ‘Golden Rice’. Agronomic biofortification involves application of micronutrient fertilizers to crops grown on MMN deficient soils. A good success has been achieved with Zn biofortification of rice and wheat in India and of wheat in Turkey. An integrated approach involving human and animal nutrition experts and agricultural scientists (plant breeders and agronomists) is helpful for ameliorating the MMN deficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prasad R (2003) Protein-energy malnutrition in India. Fert News 48(4):13–26

    Google Scholar 

  2. FAO (2009) The State of Food Insecurity in the World 2009. Food and Agriculture Organization of the UN, Rome

  3. Latham MC (1986) Malnutrition the planets problem. Hum Ecol Forum 15(3):1–53

    Google Scholar 

  4. Black RE, Lindsay HA, Bhutta ZA, Caulfield LE, DeOnnis M, Ezzat M, Mathers F, Rivera J (2008) Maternal and child under nutrition: global and regional exposures and health consequences. Lancet 371:243–260

    Article  PubMed  Google Scholar 

  5. Hotz C, Brown KH (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:194–204

    Google Scholar 

  6. Fischer Walker CL, Ezzati M, Black RE (2009) Global and regional child mortality and burden of disease attributable to zinc deficiency. Eur J Clin Nutr 63:591–597

    Article  PubMed  CAS  Google Scholar 

  7. Welch RM (2005) Harvesting health: agricultural linkages for improving human nutrition. In: Anderson P, Tuladhada JK, Karki KB, Maskey SL (eds) Micronutrients in South and Southeast Asia. International Centre for Integrated Mountain Development, Kathmandu, pp 9–10

    Google Scholar 

  8. Prasad R, Power JF (1997) Soil fertility management for sustainable agriculture. CRC-Lewis, Boca Raton

    Google Scholar 

  9. Dixon NE, Gazzola C, Blackley RL, Zerner B (1975) Jackbean urease (EC3.5.1.5) a metalloenzyme: a simple biological role for nickel. J Am Chem Soc 97:4131–4133

    Article  PubMed  CAS  Google Scholar 

  10. Brown PH, Welch RM, Cary EE (1987) Nickel: a micronutrient essential for higher plants. Plant Physiol 85:801–803

    Article  PubMed  CAS  Google Scholar 

  11. Malavolta E, Moraes M (2007) Nickel from toxic to essential nutrient. Better Crops 19(3):26–27

    Google Scholar 

  12. Lyalikova NN, Yurokova NA (1989), The influence of vanadium on microorganisms and their role in the transformation of the element. In: Anke M (ed) Molybdenum, vanadium, vol. 1. Proceedings of 6th International Trace Elements Symposium, Jena, Germany, pp 74–78

  13. Guo B (1987) A new application of rare earths in agriculture. Rare Earths Horizons. Australian Dept. Industry & Commerce, Canberra, pp 237–246

    Google Scholar 

  14. Ahmed S, Evans HJ (1960) Cobalt a micronutrient element for the growth of soybean plants under symbiotic conditions. Soil Sci 90:205–210

    Article  CAS  Google Scholar 

  15. Bell DW, Dell B (2008) Micronutrients for sustainable food, feed, fibre and bioenergy products. International Fertilizer Industry Association, Paris, p 175

    Google Scholar 

  16. Yip R, Dallman PR (1996) Iron in present knowledge in nutrition, 7th edn. ILSI Press, Washington, DC, pp 278–292

    Google Scholar 

  17. Stolzfus RJ, Dreyfuss ML (1998) Guidelines for the use of iron supplements to prevent and treat iron-deficiency anaemia. International Nutritional Anaemia Consultative Group (INACG). ILSI Press, Washington, DC

    Google Scholar 

  18. Lynch SR (2003) Iron deficiency anaemia. In: Encyclopedia of food sciences and nutrition. Academic Press, Amsterdam, pp 215–320

  19. USFNB (2001) Dietary reference intake for vitamin a, vitamin k, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. US Food and Nutrition Board, National Academy Press, Washington DC

  20. Underwood EJ, Suttle NF (1999) The mineral nutrition of livestock. CABI Publications, New York

    Book  Google Scholar 

  21. Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  22. Bosch R, Imperial J (2000) Biosynthesis of nitrogenase iron-molybdenum cofactor. Recent Res Dev Microbiol 4:131–144

    Google Scholar 

  23. Rattan RK, Datta SP, Katyal JC (2008) Micronutrient management-research achievements and future challenges. Ind J Fertil 4(12):93–118

    CAS  Google Scholar 

  24. Behera SK, Singh MV, Lakaria BL (2009) Micronutrient deficiencies in Indian soils and their amelioration through fertilization. Ind Fmg 59(2):28–31

    Google Scholar 

  25. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    PubMed  CAS  Google Scholar 

  26. Romheld V, Marschner H (1990) Genotypic differences among graminaceous species in release of phytosiderophores and uptake of iron. Plant Soil 123:147–153

    Article  Google Scholar 

  27. Singh K, Chino M, Nishizawa NK, Ohata T, Mori S (1993) Genotypic variation among Indian graminaceous species with respect to phytosiderphore secretion. In: Randall PJ et al (eds) Genetic aspects of plant mineral nutrition. Kluwer, Dordrecht, pp 335–339

    Chapter  Google Scholar 

  28. Singh K, Sharma HC, Sarangi SK, Sudhakara PK (2003) Iron nutrition in rice. Fert News 48(2):21–31

    Google Scholar 

  29. Walker CF, Black RE (2004) Zinc and the risk for infectious diseases. Ann Rev Nutr 5:233–249

    Google Scholar 

  30. Miccici K (2000) Family common sense. Ohio State University, Columbus

    Google Scholar 

  31. Ho E (2004) Zinc deficiency, DNA damage and cancer risk. Nutr Biochem 15:572–578

    Article  CAS  Google Scholar 

  32. Shukla VK, Doyon Y, Miller JC (2009) Precise genome modification in the crop species Zea mays using Zn-finger nucleases. Nature 459:437–441

    Article  PubMed  CAS  Google Scholar 

  33. Ringstad J, Aesth J, Alexander J (1990) Geomedicine. In: Lag J (ed) CRC Press, Boca Raton

  34. Pathak P, Kapil U, Dwivedi SN, Singh R (2008) Serum Zn level amongst pregnant women in a rural block of Haryana state, India. Asia Pac J Clin Nutr 17:276–279

    PubMed  CAS  Google Scholar 

  35. Stein AJ, Nestel P, Meenakshi JV, Qaim M, Sachdev HPS, Bhutta ZA (2007) Plant breeding to control zinc deficiency in India: how cost effective in biofortification. Public Health Nutr 106:492–501

    Google Scholar 

  36. McDowell LR (2003) Minerals in animal and human nutrition, 2nd edn. Elsevier Sci BV, Amsterdam

    Google Scholar 

  37. Miller JK, Miller WJ (1962) Experimental zinc deficiency and recovery of calves. J Nutr 76:467–473

    PubMed  CAS  Google Scholar 

  38. Prasad R (2006) Zinc in soils and plant, human and animal nutrition. Ind J Fertil 2(9):103–119

    CAS  Google Scholar 

  39. Nene YL (1966) Symptoms, causes and control of khaira disease of paddy. Bull Ind Phytopath Soc 3:97–101

    Google Scholar 

  40. Yoshida S, Ahn, Forno DA (1973) Occurrence, diagnosis and correction of zinc deficiency of lowland rice. Soil Sci Plant Nutr 19:83

    Article  CAS  Google Scholar 

  41. Katyal JC, Rattan RK (2003) Secondary and micronutrients-research gaps and future needs. Fertil News 48(4):9–20

    CAS  Google Scholar 

  42. Singh MV, Patel KP, Ramani VP (2003) Crop response to secondary and micronutrients in swell-shrink soils. Fertil News 48(4):55–68

    CAS  Google Scholar 

  43. Deb DL (1997) Micronutrient research and production in India. J Ind Soc Soil Sci 45:675–692

    CAS  Google Scholar 

  44. Shivay YS, Kumar D, Prasad R, Ahlawat IPS (2008) Relative yield and zinc uptake by rice from zinc sulphate and zinc oxide coating onto urea. Nutr Cycle Agroecosyst 80:181–188

    Article  CAS  Google Scholar 

  45. Shivay YS, Prasad R, Rahal A (2008) Relative efficiency of zinc oxide and zinc sulphate enriched urea for spring wheat. Nutr Cycle Agroecosyst 82:259–264

    Article  CAS  Google Scholar 

  46. Keen CL, Zidenberg-Cheor S (1999) Manganese in encyclopedia of food science and nutrition. Academic Press, Amsterdam, pp 3681–3691

    Google Scholar 

  47. Rutherford AW, Boussac A (2004) Water photolysis in biology. Science 303:1782–1783

    Article  PubMed  CAS  Google Scholar 

  48. Bergmann W (1992) Colour atlas-nutritional disorders of plants development, visual and analytical diagnosis. Gustav Fishcer Verlag, Jena

    Google Scholar 

  49. Bansal RL, Singh SP, Narinder SP, Kumar S, Sadana US (1990) Micronutrients in soils and crops of Punjab. Dept. of Soils, Punjab Agric University, Ludhiana

    Google Scholar 

  50. Takkar PN, Chhibba IM, Mehta SK (1989) Twenty years of coordinated research on micronutrients in soils and crops. Indian Institute of Soil Science, Bhopal

    Google Scholar 

  51. Dobermann A, Fairhurst T (2000) Nutritional disorders and nutrient management. International Rice Research Institute, Los Baños, pp 132–134

    Google Scholar 

  52. Mandal LN (1961) Transformations of iron and manganese in water-logged soils. Soil Sci 91:121–126

    Article  CAS  Google Scholar 

  53. Prasad R (2007) Crop nutrition: principles and practices. New Vishal Publications, New Delhi

    Google Scholar 

  54. Uauy R, Olivares M, Gonzales M (2008) Essentiality of copper in humans. Am J Clin Nutr 67(Suppl):952S–959S

    Google Scholar 

  55. Neish AC (1939) Studies on chloroplasts. Biochem J 33:300–308

    PubMed  CAS  Google Scholar 

  56. Jackson C, Dench J, Moore AL, Halliwel B, Foyer CH, Hall OD (1978) Sub-cellular localization and identification of superoxide dismutase in the leaves of higher plants. J Biochem 91:339–344

    CAS  Google Scholar 

  57. Graham RD, Webb MJ (1991) Microelements and disease resistance and tolerance in plants. In: Mortvedt JJ et al (eds) Micronutrients in agriculture. Soil Science Society of America, Madison, pp 329–370

    Google Scholar 

  58. Robson AD, Hartley RD, Jarvis SC (1981) Effect of copper deficiency in phenolic and other constituents of wheat cell walls. New Phytol 89:361–372

    Article  CAS  Google Scholar 

  59. Graham RD (1983) Effect of nutrient stress on susceptibility of plants to diseases with particular reference to trace elements. Adv Bot Res 10:241–276

    Google Scholar 

  60. Turnlund JR (1999) Copper. In: Shils M et al (eds) Nutrition, health and disease, 9th edn. Williams and Wilkins, Baltimore, pp 241–252

    Google Scholar 

  61. Dell B (1981) Male sterility and anther wall structures in copper deficient plants. Ann Bot (Lond) 48:599–608

    CAS  Google Scholar 

  62. Dell B, Mallajczuk N, Xu D, Grove TS (2001) Nutrient disorders in plantation. Eucalyptus, 2nd edn. Australian Centre for International Agricultural Research, Monograph 74, Canberra

    Google Scholar 

  63. Verstaeten SV, Lanoue L, Kem CL, Oteiza PI (2005) Relevance of lipid polar headgroups on boron mediated changes in membrane physiological properties. Arch Biochem Biophys 438:103–110

    Article  CAS  Google Scholar 

  64. Hunt CD (2003) Dietary boron- an overview for its role in immune function. J Trace Elem Exp Med Biol 16:291–306

    Article  CAS  Google Scholar 

  65. Devirian TA, Volpe SL (2003) The physiological effects of dietary boron. Clin Rev Food Sci Nutr 43:219–231

    Article  CAS  Google Scholar 

  66. Armstrong TA, Spears JW (2001) Effect of dietary boron on growth performance, calcium and phosphorus metabolism and bone mechanical properties in growing barrows. J Anim Sci 79:3120–3127

    PubMed  CAS  Google Scholar 

  67. O’Neil MA, Ishi T, Albersheim P, Darvill AG (2004) Rhamnogalacturoran II: structure and functions of a borate cross-linked cell wall pectic saccharide. Ann Rev Plant Biol 55:109–139

    Article  CAS  Google Scholar 

  68. Dell B, Huang L (1997) Physiological response of plants to low boron. Plant Soil 193:103–120

    Article  CAS  Google Scholar 

  69. Dell B, Brown PH, Bell RW (2002) Boron in soils and plants: reviews. Kluwer, Dordrecht

    Google Scholar 

  70. Bell RW (1997) Diagnosis and prediction of boron deficiency for plant production. Plant Soil 193:149–168

    Article  CAS  Google Scholar 

  71. Mengel K, Kirkby EA (1987) Principles of plant nutrition. Panima Educational Book Agency, New Delhi

    Google Scholar 

  72. Shrotriya GC, Phillips M (2002) Boron in Indian agriculture-retrospect and prospect. Fertil News 47(12):95–102

    CAS  Google Scholar 

  73. Takkar PN (1996) Micronutrient research and sustainable agricultural productivity in India. J Ind Soc Soil Sci 44:562–581

    CAS  Google Scholar 

  74. Sarkar D, Mandal B, Sarkar AK, Singh S, Jena D, Patra DP, Phillips M (2006) Response of boronated NPK in B deficient soils. Ind J Fertil 1(12):57–59

    Google Scholar 

  75. Nilsen EH (1999) Ultra trace minerals. In: Shils et al. (eds) Nutrition in health and disease, Ninth edition, Williams and Wilkins, Baltimore, pp 283–303

  76. Hille R (1999) Molybdenum enzymes. Essays Biochem 34:125–137

    PubMed  CAS  Google Scholar 

  77. Postgate J (1985) Nitrogenase. Biologist 32:43–48

    CAS  Google Scholar 

  78. Bussler W (1970) Development of molybdenum deficiency in cauliflower. Z Pflanz Physiol Bodenk 125:36–50

    Article  CAS  Google Scholar 

  79. Gupta UC, Lipsett J (1981) Molybdenum in soils, plants and animals. Adv Agron 34:73–115

    Article  CAS  Google Scholar 

  80. Seedberry JE Jr., Sharmaputra TS, Brupbacker RH, Phillips S, Sivane LW, Melville DR, Ralb JI, Davis J (1973) Molybdenum investigations with soybean. Louisiana State Univ Agric Exp Stn Bull 670

  81. Riley MM (1987) Molybdenum deficiency in Western Australia. J Plant Nutr 10:2117–2123

    Article  CAS  Google Scholar 

  82. Horton S, Alderman H, Rivera JA (2008) Hunger and malnutrition challenge. Frederiksberg Copenhagen Consensus (http://wwwCopenhagenconsensus/default.aspx?ID=1149)

  83. Anonymous (2002) The World Health Report 2002. World Health Organization, Geneva

  84. WHO (2009) Micronutrient deficiencies: iron deficiency anaemia. World Health Organization, Geneva, (http:/www.who.int/nutrition/topics/idea/)

  85. Litzman MF (2003) Zinc supplement use and risk of prostate cancer. J Natl Cancer Inst 95:1004–1007

    Article  Google Scholar 

  86. Kanani SJ, Poojara RH (2000) Supplementation with iron and folic acid enhances growth in adolescent Indian girls. J Nutr 130:452S–455S

    PubMed  CAS  Google Scholar 

  87. Sood M, Sharda D (2002) Iron food supplement. Indian J Pediatr 69(11):943

    Article  PubMed  Google Scholar 

  88. Varma JL, Das S, Sankar R, Manna MG, Levinson FJ, Hamer DH (2007) Community level micronutrient fortification of a food supplement in India: a controlled trial in pre-school children aged 36–66 mo. Am J Clin Nutr 85:1127–1133

    PubMed  CAS  Google Scholar 

  89. Anonymous (2009) Fertilizer statistics 2008–09. The Fertilizer Association of India, New Delhi

  90. Dhaliwal SS, Sadana US, Manchanda JS, Dhadli HS (2000) Biofortification of wheat grains with zinc and iron in Typic Ustochrept soils of Punjab. Indian J Fertil 5(11):13–20

    Google Scholar 

  91. Gibson RS (2005) Dietary strategies to enhance micronutrient adequacy: experiences in developing countries. In: Anderson P, Tuladhar JK, Kakri KB, Maskey SL (eds) Micronutrients in South and Southeast Asia. International Centre for Integrated Mountain Development, Kathmandu, pp 3–7

    Google Scholar 

  92. Jaggi RC (2007) Nutritional research in vegetables of Himachal Pradesh. Indian J Fertil 2(12):25–41

    CAS  Google Scholar 

  93. White PJ, Bradshaw JE, Finlay M, Ramsay G, Hammond JP, Broadley MR (2009) Relationship between yield and mineral concentrations in potato tubers. Hort Sci 44:6–11

    Google Scholar 

  94. Cakmak I, Ozkan H, Graun HJ, Welch RM, Romheld V (2000) Zinc and iron concentration in seeds of wild, primitive and modern wheats. Food Nutr Bull 21:401–403

    Google Scholar 

  95. Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Article  Google Scholar 

  96. Stein AJ (2009) Global impacts of human mineral nutrition. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  97. Qaim M, Stein AJ, Meenakshi JV (2007) Economics of biofortification. Agric Econ 37:S119–S123

    Article  Google Scholar 

  98. De Groote H, Chege Kimenju S (2008) Comparing consumer preference for colour and nutritional quality in maize: application of a semi-double bond logistic model on urban consumption in Kenya. Food Policy 33:362–370

    Article  Google Scholar 

  99. Cohen JI, Pearlboy R (2002) Explaining approval and availability of GM crops in developing countries. New Biotechnol 4:1–6

    Google Scholar 

  100. Conko G, Miller HI (2002) Fod safety: the precautionary principles is the wrong approach. Eur Aff 2:122–128

    Google Scholar 

  101. Neilson CP, Thierfelder K, Robinson S (2001) Genetically modified foods, trade and developing countries. International Food Policy Research Institute, Washington, DC (discussion paper 77)

    Google Scholar 

  102. Isaac GE (2002) Agricultural biotechnology and transatlantic trade, regulatory barriers to GM crops. CABI Publishing, UK

    Book  Google Scholar 

  103. Delmer DP, Nottenberg C, Graff GD, Benett AB (2003) Intellectual property resource for international development in agriculture. Plant Physiol 133:1666–1670

    Article  PubMed  CAS  Google Scholar 

  104. Potrykus I (2009) Lessons from golden rice in public sector responsibility and failure. New Biotechnol 25:S321–S322

    Article  Google Scholar 

  105. Hagenimna V, Law J (2000) Potential of orange-fleshed sweet potatoes for raising vitamin A intake in Africa. Food Nutr Bull 21:414–418

    Google Scholar 

  106. Van Jaaersveld PJ, Faber M, Tanumihardjo SA, Nestel P, Lombard CJ, Benade’ AJS (2005) Beta-carotene-rich orange-fleshed sweet potato improves the vitamin A status of primary school children assessed with modified-relative-dose-response test. Am J Clin Nutr 81:1080–1087

    Google Scholar 

  107. Low JW, Arimond M, Osman N, Cunguara B, Zano F, Tschirley D (2007) A food-base approach introducing orange-fleshed sweet potatoes increased Vitamin A intake and serum retinol concentrations in young children in rural Mozambique. J Nutr 137:1320–1327

    PubMed  CAS  Google Scholar 

  108. Ye X, Al-Babili S, Kloti A, Zheng J, Luca P, Beyer P, Potrykus I (2000) Engineering the pro-vitamin A (b-carotene) biosynthesis pathway into (caretenoid free) rice endosperm. Science 287:303–305

    Article  PubMed  CAS  Google Scholar 

  109. Haas TD, Beards JL, Murray-Kolb LE, del Mundo AM, Felix AR, Gregoria GB (2005) Iron fortified rice improves iron storage in non-anaemic Filipino women. J Nutr 135:2823–2830

    PubMed  CAS  Google Scholar 

  110. Cairns G (2005) Food biotechnology and consumer perception in Asia. Food Nutr Bull 26: 443–444

    Google Scholar 

  111. Pearlbery R (2006) Are genetically modified (GM) crops a commercial risk in Africa. Int J Tech Glob 2:81–92

    Google Scholar 

  112. Potrykus I (2001) Golden rice and beyond. Plant Physiol 125:1157–1161

    Article  PubMed  CAS  Google Scholar 

  113. Cakmak I, Kalayci M, Ekiz H, Braun HJ, Yilmaz A (1999) Zinc deficiency an actual problem in plant and human nutrition in Turkey. A NATO—Science for Stability Project. Field Crops Res 60:175–188

    Article  Google Scholar 

  114. Prasad R (2009) Fertifortification of grains: an easy option to alleviate malnutrition of some micronutrients in human beings. Indian J Fertil 5(12):129–133

    CAS  Google Scholar 

  115. Dhaliwal SS, Sadana US, Manchanda JS, Dhadli HS (2009) Biofortification of wheat grains with zinc and iron in Typic Ustochrept soils of Punjab. Indian J Fertil 5(11):13–20

    CAS  Google Scholar 

  116. Shivay YS, Kumar D, Prasad R (2000) Effects of zinc fertilization on physical grain quality of basmati rice. Int Rice Res Notes 32(1):41–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, R. Micro Mineral Nutrient Deficiencies in Humans, Animals and Plants and Their Amelioration. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 82, 225–233 (2012). https://doi.org/10.1007/s40011-012-0029-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-012-0029-x

Keywords

Navigation