Skip to main content
Log in

On the Hydromagnetic Stability Analysis of Inviscid Compressible Annular Flows

  • Scientific Research Paper
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

The hydromagnetic stability of inviscid compressible flows with axial and azimuthal velocity components in an annular channel has been studied to axisymmetric disturbances. An estimate for the growth rate of arbitrary unstable disturbances is obtained. It is shown that the complex phase-velocity of any unstable magneto-subsonic axisymmetric mode must lie in a semiellipse-type region, which depends on the parameters of compressibility, stratification and the magnetic field. For a monotonic axial velocity profile, this semiellipse-type instability region reduces to the line \(c_{i}=0\) as the minimum Richardson number \({\widetilde{J}}_{m}\rightarrow \frac{1}{4}-\) in accord with the Richardson number criterion. Further, an semi-elliptical instability region depending on the minimum local Richardson number is also obtained for a class of magneto-supersonic axisymmetric disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dandapat BS, Gupta AS (1975) On the stability flow in magnetogasdynamics. Q Appl Math 33(2):182–186

    Article  MATH  Google Scholar 

  2. Zhang Y, Ding N (2006) Effects of compressibility on the magneto-Rayleigh Taylor instability in Z-pinch implosions with sheared axial flows. Phys Plasmas 13:022701

    Article  ADS  Google Scholar 

  3. Howard LN (1973) On the stability of compressible swirling flows. Stud Appl Math 52(1):39–43

    Article  MathSciNet  MATH  Google Scholar 

  4. Fung YT (1986) A Richardson criterion for compressible swirling flows in a tordial magnetic field. Phys Fluids 29:1326–1328

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Miles JW (1961) On the stability of heterogeneous shear flows. J Fluid Mech 10:496–508

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Howard LN (1961) Note on a paper of John W. Miles. J Fluid Mech 10:509–512

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Waleffe F (2019) Semicircle theorem for streak instability. Fluid Dyn Res 51(1):011403. https://doi.org/10.1088/1873-7005/aadb58

    Article  MathSciNet  ADS  Google Scholar 

  8. Deguchi K (2021) Eigenvalue bounds for compressible stratified magneto-shear flows varying in two transverse directions. J Fluid Mech 920:A55

    Article  MATH  ADS  Google Scholar 

  9. Howard LN, Gupta AS (1962) On the hydrodynamic and hydromagnetic stability of swirling flows. J Fluid Mech 14(3):463–476

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Singh SN, Hankey WL (1981) On vortex breakdown and instability. AFWAL-TR 81–3021, pp 1–25

  11. Lalas DP (1975) The Richardson criterion for compressible swirling flows. J Fluid Mech 69(1):65–72

    Article  MATH  ADS  Google Scholar 

  12. Thulasi V, Subbiah M (1989) On the stability of compressible swirling flows. Indian J Pure Appl Math 20(11):1159–1171

    MATH  Google Scholar 

  13. Albayrak A, Juniper M, Polifke W (2019) Propagation speed of inertial waves in cylindrical flows. J Fluid Mech 879:85–120

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Chandrasekhar S (1961) Hydrodynamic and hydromagnetic instability. Clarendon Press, Oxford

    MATH  Google Scholar 

  15. Fung YT (1984) On the stability of vortex motions in the presence of magnetic fields. Phys Fluids 27:838–847

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Sasakura Y (1984) Semi-ellipse theorem for the heterogeneous swirling flow in an azimuthal magnetic field with respect to axisymmetric disturbances. J Phys Soc Japan 53(6):2012–2017

    Article  MathSciNet  ADS  Google Scholar 

  17. Iype MSA, Subbiah M (2008) Eigen value bounds in the stability problem of hydromagnetic swirling flows. Indian J Pure Appl Math 39:211–225

    MathSciNet  MATH  Google Scholar 

  18. Iype MSA, Subbiah M (2010) On the hydrodynamic and hydromagnetic stability of inviscid flows between coaxial cylinders. Inter J Fluid Mech Research 37:1–15

    Google Scholar 

  19. Prakash S, Subbiah M (2021) Bounds on complex eigenvalues in a hydromagnetic stability problem. J Anal 29:1137–1150

    Article  MathSciNet  MATH  Google Scholar 

  20. Fung YT (1983) Non-axisymmetric instaility of a rotating layer of fluid. J Fluid Mech 127:83–90

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. Dipierro B, Abid M (2012) Rayleigh-Taylor instability in variable density swirling flows. Eur Phys J B 85:69–76

    Article  ADS  Google Scholar 

  22. Dixit HN, Govindarajan R (2011) Stability of a vortex in radial density stratification: role of wave interactions. J Fluid Mech 679:582–615

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Dattu H, Subbiah M (2015) A note on the stability of swirling flows with radius dependent density with respect to infinitesimal azimuthal disturbances. ANZIAM J 56:209–232

    Article  MathSciNet  MATH  Google Scholar 

  24. Prakash S, Subbiah M (2022) Eigenvalue bounds in an azimuthal instability problem of inviscid swirling flows. J Indian Math Soc 89(3–4):387–405

    Article  MathSciNet  MATH  Google Scholar 

  25. Jacques C, Dipierro B, Alizard F, Buffat M (2023) Stability of variable density rotating flows: inviscid case and viscous effects in the limit of large Reynolds numbers. Phys Rev Fluids 8:033901. https://doi.org/10.1103/PhysRevFluids.8.033901

    Article  ADS  Google Scholar 

  26. Leibovich S, Stewartson K (1983) A sufficient condition for the instability of columnar vortices. J Fluid Mech 126:335–356

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Srinivasan V, Kandaswamy P, Debnath L (1984) Hydromagnetic stability of rotating stratified compressible fluid flows. ZAMP 35:728–738

    MATH  ADS  Google Scholar 

  28. Bhattacharyya SN, Gupta AS, Ganguly K (1985) Hydromagnetic stability of some non-dissipative flows subject to non-axisymmetric disturbances. Astrophys Space Sci 115:51–60

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Barston EM (1980) Circle theorem for inviscid steady flows. Int J Eng Sci 18:477–489

    Article  MathSciNet  MATH  Google Scholar 

  30. Iype MSA (2010) Some analytical and numerical results on the hydrodynamic and hydromagnetic stability of inviscid swirling flows. Pondicherry University, Pondicherry

    Google Scholar 

  31. Shumlak U, Roderick NF (1998) Mitigation of the Rayleigh-Taylor instability by sheared axial flows. Phys Plasmas 5(6):2384–2389

    Article  ADS  Google Scholar 

  32. Kouznetsov A, Freidberg JP, Kesner J (2007) The effect of sheared axial flow on the interchange mode in a hard-core Z pinch. Phys Plasmas 14(1):012503. https://doi.org/10.1063/1.2423014

    Article  ADS  Google Scholar 

  33. Pavithra P, Subbiah M (2021) On compressible circular Rayleigh problem of hydrodynamic stability. Sadhana-Indian Acad Sci 46(178):1–12. https://doi.org/10.1007/s12046-021-01696-z

    Article  MathSciNet  MATH  Google Scholar 

  34. Kochar GT, Jain RK (1979) Note on Howard’s semicircle theorem. J Fluid Mech 91:489–491

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Drazin PG, Reid WH (1981) Hydrodynamic stability. Cambridge University Press, UK

    MATH  Google Scholar 

  36. Jain RK, Kochar GT (1983) Stability of stratified shear flows. J Math Anal Appl 96:269–282

    Article  MathSciNet  MATH  Google Scholar 

  37. Acheson DJ, Hide R (1973) Hydromagnetics of rotating fluids. Rep Prog Phys 36:159–221

    Article  ADS  Google Scholar 

  38. Rudiger G, Gellert M, Hollerbach R, Schultz M, Stefani F (2018) Stability and instability of hydromagnetic Taylor - Couette flows. Phys Reports 741:1–89

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. Raphaldini B, Dikpati M, Raupp CFM (2023) Quasi-geostropic MHD equation: hamiltonian formulation and non linear stability. Comp Appl Math 42(1):57. https://doi.org/10.1007/s40314-023-02192-2

    Article  MATH  Google Scholar 

Download references

Acknowledgments

S. Prakash acknowledges with thanks to Council of Scientific and Industrial Research (CSIR), India for supporting this research work under Grant No. 09/559(0134)/2019-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Prakash.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest in the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, S., Subbiah, M. On the Hydromagnetic Stability Analysis of Inviscid Compressible Annular Flows. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 93, 601–611 (2023). https://doi.org/10.1007/s40010-023-00848-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-023-00848-6

Keywords

Mathematics Subject Classification

Navigation