Skip to main content
Log in

Magnetization Dynamics of Domain Walls in Cylindrical Nanowires

  • RESEARCH ARTICLE
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

Domain walls in cylindrical nanowires exhibit several intriguing properties making them suitable for spintronic applications. Here, we report the microwave response of domain walls in cylindrical nanowires using micromagnetic simulations. The domain walls exhibit two kinds of reversal modes, namely vortex reversal mode and transverse reversal mode. The present study is confined to the sub-50-nm-diameter cylindrical nanowires, where the transverse domain wall is a stable configuration. The microwave properties are highly dependent on demagnetizing fields that exist along the nanowire. Two well distinguishable modes are observed in the nanowires, one that arises from the domain wall and the other due to the inhomogeneities at the edges. Both modes are found to be sensitive to the diameter of the cylindrical nanowire. The results reveal additional functionality of the DWs in cylindrical nanowires based on high-frequency spin dynamics for microwave applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Parkin SSP, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320:190–194. https://doi.org/10.1126/science.1145799

    Article  ADS  Google Scholar 

  2. Hayashi M, Thomas L, Moriya R et al (2008) Current-controlled magnetic domain-wall nanowire shift register. Science 320:209–211. https://doi.org/10.1126/science.1154587

    Article  ADS  Google Scholar 

  3. Hara M, Shibata J, Kimura T, Otani Y (2006) Control of domain wall pinning by a switchable magnetic gate. Appl Phys Lett 89:192504. https://doi.org/10.1063/1.2385224

    Article  ADS  Google Scholar 

  4. Schryer NL, Walker LR (1974) The motion of 180° domain walls in uniform dc magnetic fields. J Appl Phys 45:5406–5421. https://doi.org/10.1063/1.1663252

    Article  ADS  Google Scholar 

  5. Yan M, Kákay A, Gliga S, Hertel R (2010) Beating the walker limit with massless domain walls in cylindrical nanowires. Phys Rev Lett 104:057201. https://doi.org/10.1103/physrevlett.104.057201

    Article  ADS  Google Scholar 

  6. Yan M, Andreas C, Kákay A et al (2011) Fast domain wall dynamics in magnetic nanotubes: suppression of walker breakdown and Cherenkov-like spin wave emission. Appl Phys Lett 99:122505. https://doi.org/10.1063/1.3643037

    Article  ADS  Google Scholar 

  7. González AL, Landeros P, Núñez ÁS (2010) Spin wave spectrum of magnetic nanotubes. J Magn Magn Mater 322:530–535. https://doi.org/10.1016/j.jmmm.2009.10.010

    Article  ADS  Google Scholar 

  8. Leblond H, Veerakumar V (2004) Magnetostatic spin solitons in ferromagnetic nanotubes. Phys Rev B 70:134413. https://doi.org/10.1103/physrevb.70.134413

    Article  ADS  Google Scholar 

  9. Balhorn F, Mansfeld S, Krohn A et al (2009) Spin-wave interference in three-dimensional rolled-up ferromagnetic microtubes. Phys Rev Lett 104:037205. https://doi.org/10.1103/physrevlett.104.037205

    Article  ADS  Google Scholar 

  10. Franchin M, Knittel A, Albert M et al (2011) Enhanced spin transfer torque effect for transverse domain walls in cylindrical nanowires. Phys Rev B 84:094409. https://doi.org/10.1103/physrevb.84.094409

    Article  ADS  Google Scholar 

  11. Wieser R, Vedmedenko EY, Weinberger P, Wiesendanger R (2010) Current-driven domain wall motion in cylindrical nanowires. Phys Rev B 82:144430. https://doi.org/10.1103/physrevb.82.144430

    Article  ADS  Google Scholar 

  12. Sekhar MC, Goolaup S, Purnama I, Lew WS (2014) Depinning assisted by domain wall deformation in cylindrical NiFe nanowires. J Appl Phys 115:083913. https://doi.org/10.1063/1.4867004

    Article  ADS  Google Scholar 

  13. Ivanov YP, Chuvilin A, Lopatin S et al (2017) Direct observation of current-induced motion of a 3D vortex domain wall in cylindrical nanowires. Acs Appl Mater Inter 9:16741–16744. https://doi.org/10.1021/acsami.7b03404

    Article  Google Scholar 

  14. Mohammed H, Vidal EV, Ivanov YP, Kosel J (2016) Magnetotransport measurements of domain wall propagation in individual multisegmented cylindrical nanowires. Ieee T Magn 52:1–5. https://doi.org/10.1109/tmag.2016.2536644

    Article  Google Scholar 

  15. Col SD, Jamet S, Staňo M et al (2016) Nucleation imaging and motion of magnetic domain walls in cylindrical nanowires. Appl Phys Lett 109:062406. https://doi.org/10.1063/1.4961058

    Article  ADS  Google Scholar 

  16. M. Donahue and D. G. Porter, OOMMF User’s guide, Version 1.0, Interagency Report NISTIR 6376, National Institute of Standard and Technology, Gaithersburg, MD, 1999. http://math.nist.gov/oommf

  17. OOMMF Extension for Current-induced Domain Wall Motion developed by IBM Research, Zurich. http://www.zurich.ibm.com/st/magnetism/spintevolve.html

  18. Kumar D, Adeyeye AO (2017) Techniques in micromagnetic simulation and analysis. J Phys D Appl Phys 50:343001. https://doi.org/10.1088/1361-6463/aa7c04

    Article  Google Scholar 

  19. Biziere N, Gatel C, Lassalle-Balier R et al (2013) Imaging the fine structure of a magnetic domain wall in a Ni nanocylinder. Nano Lett 13:2053–2057. https://doi.org/10.1021/nl400317j

    Article  ADS  Google Scholar 

  20. Kittel C (1947) On the theory of ferromagnetic resonance absorption. Phys Rev 73:155–161. https://doi.org/10.1103/physrev.73.155

    Article  ADS  Google Scholar 

  21. Murapaka C, Goolaup S, Purnama I, Lew WS (2015) Coupled domain wall oscillations in magnetic cylindrical nanowires. J Appl Phys 117:053913. https://doi.org/10.1063/1.4907584

    Article  ADS  Google Scholar 

Download references

Acknowledgements

CM would like to acknowledge funding from SERB-Early Career Research Award (ECR/2018/002664). AH would like to acknowledge funding from Ramanujan Fellowship (SB/S2/RJN-118/2016), Department of Science and Technology, India.

Funding

SERB,ECR/2018/002664,Chandrasekhar Murapaka,SB/S2/RJN-118/2016,Arabinda Haldar

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arabinda Haldar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devapriya, M.S., Biswas, K., Murapaka, C. et al. Magnetization Dynamics of Domain Walls in Cylindrical Nanowires. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 93, 439–443 (2023). https://doi.org/10.1007/s40010-023-00831-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-023-00831-1

Keywords

Navigation