Skip to main content
Log in

Tuning the Optical Properties of ZnO Nanorods Through Gd Doping

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

Optoelectronic features of Zn1-xGdxO (x = 0.01, 0.03 and 0.05) nanorods were explored through a series of optical characterizations. The presence of different functional groups and vibrational modes in the samples were observed through Fourier-transform infrared (FTIR) and Raman characterizations, respectively. The characteristic stretching vibrational modes of Zn–O and Gd-Zn–O were probed through FTIR. The peaks appeared in the Raman spectra are associated with the characteristics of ZnO samples. The bandgap of the ZnO sample decreased from 3.19 to 3.16 eV with increasing Gd doping concentration as evident from UV–Visible spectroscopy. Photoluminescence measurement showed the signature of intrinsic defects and the colour emission of the samples shifted more towards the green emission region with Gd doping concentration. Our study demonstrates the possible usefulness of the materials in commercial UV lighting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pal U, Gracia Serrano J, Santiago P, Xiong G, Ucer KB, Williams RT (2006) Synthesis and optical properties of ZnO nanostructures with different morphologies. Opt Mater 29:65–69

    Article  ADS  Google Scholar 

  2. Ntwaeaborwa OM, Mofokeng SJ, Kumar V, Kroon RE (2017) Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 182:42–49

    Article  ADS  Google Scholar 

  3. Suwanboon S, Amornpitoksuk P, Haidoux A, Tedenac JC (2008) Structural and optical properties of undoped and aluminium doped zinc oxide nanoparticles via precipitation method at low temperature. J Alloy Compd 462:335–339

    Article  Google Scholar 

  4. Wu J-J, Liu S-C (2002) Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv Mater 14:215–218

    Article  Google Scholar 

  5. Galdámez-Martinez A, Santana G, Güell F, Martínez-Alanis PR, Dutt A (2020) Photoluminescence of ZnO nanowires: a review. Nanomaterials 10:857

    Article  Google Scholar 

  6. Singhai M, Chhabra V, Kang P, Shah DO (1997) Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol ot microemulsion. Mater Res Bull 32:239–247

    Article  Google Scholar 

  7. Sonker RK, Sabhajeet SR, Singh S, Yadav BC (2015) Synthesis of ZnO nanopetals and its application as NO2 gas sensor. Mater Lett 152:189–191

    Article  Google Scholar 

  8. Wang L, Kang Y, Liu X, Zhang S, Huang W, Wang S (2012) ZnO nanorod gas sensor for ethanol detection. Sens Actuators, B Chem 162:237–243

    Article  Google Scholar 

  9. Huang J, Yin Z, Zheng Q (2011) Applications of ZnO in organic and hybrid solar cells. Energy Environ Sci 4:3861

    Article  Google Scholar 

  10. Divya NK, Pradyumnan PP (2017) High dielectric constant, low loss and high photocatalytic activity in Gd doped ZnO systems. Mater Res Express 4:015904

    Article  ADS  Google Scholar 

  11. Franco A Jr, Pessoni HVS (2017) Effect of Gd doping on the structural, optical band-gap, dielectric and magnetic properties of ZnO nanoparticles. Physica B 506:145–151

    Article  ADS  Google Scholar 

  12. Panda NR, Acharya BS (2014) Impurity induced crystallinity and optical emissions in ZnO nanorod arrays. Mater Res Express 2:015011

    Article  ADS  Google Scholar 

  13. Kohan AF, Ceder G, Morgan D, Van de Walle CG (2000) First-principles study of native point defects in ZnO. Phys Rev B 61:15019

    Article  ADS  Google Scholar 

  14. Sahu D, Panda NR, Acharya BS (2017) Effect of Gd doping on structure and photoluminescence properties of ZnO nanocrystals. Mater Res Express 4:114001

    Article  ADS  Google Scholar 

  15. Kenyon AJ (2002) Recent developments in rare-earth doped materials for optoelectronics. Prog Quantum Electron 26:225–284

    Article  ADS  Google Scholar 

  16. Pal PP, Manam J (2013) Photoluminescence and thermoluminescence studies of Tb3+ doped ZnO nanorods. Mater Sci Eng, B 178:400–408

    Article  Google Scholar 

  17. Ma X, Wang Z (2012) The optical properties of rare earth Gd doped ZnO nanocrystals. Mater Sci Semicond Process 15:227–231

    Article  Google Scholar 

  18. Selvaraju C, Karthick R, Veerasubam R (2019) The modification of structural, optical and antibacterial activity properties of rare earth gadolinium-doped ZnO nanoparticles prepared by co-precipitation method. J Inorg Organomet Polym 29:776–782

    Article  Google Scholar 

  19. Satpathy SK, Panigrahi UK, Panda SK, Thiruvengadam V, Biswal R, Luyten W, Mallick P (2021) Influence of Gd doping on morphological, toxicity and magnetic properties of ZnO nanorods. Mater Today Commun 28:102725

    Article  Google Scholar 

  20. Raza W, Haque MM, Muneer M (2014) Synthesis of visible light driven ZnO: characterization and photocatalytic performance. Appl Surf Sci 322:215–224

    Article  ADS  Google Scholar 

  21. Khajuria H, Ladol J, Singh R, Khajuria S, Sheikh HN (2015) Surfactant assisted sonochemical synthesis and characterization of gadolinium doped zinc oxide nanoparticles. Acta Chim Slov 62:849–858

    Article  Google Scholar 

  22. Panigrahi UK, Das PK, Biswal R, Sathe V, Babu PD, Mitra A, Mallick P (2020) Zn doping induced enhancement of multifunctional properties in NiO nanoparticles. J Alloy Compd 833:155050

    Article  Google Scholar 

  23. Panigrahi UK, Sahu B, Behuria HG, Sahu SK, Dhal SP, Hussain S, Mallick P (2021) Synthesis, characterization and bioactivity of thio-acetamide modified ZnO nanoparticles embedded in zinc acetate matrix. Nano Ex 2:010012

    Article  ADS  Google Scholar 

  24. Panigrahi UK, Das PK, Babu PD, Mishra NC, Mallick P (2019) Structural, optical and magnetic properties of Ni1−xZnxO/Ni nanocomposite. SN Appl Sci 1:438

    Article  Google Scholar 

  25. Getie S, Belay A, Chandra Reddy AR, Belay Z (2017) Synthesis and characterizations of zinc oxide nanoparticles for antibacterial applications. J Nanomed Nanotechnol S. https://doi.org/10.4172/2157-7439.S8-004

    Article  Google Scholar 

  26. Zhou H, Chen L, Malik V, Knies C, Hofmann DM, Bhatti KP, Chaudhary S, Klar PJ, Heimbrodt W, Klingshirn C, Kalt H (2007) Raman studies of ZnO:Co thin films. Phys stat sol (a) 204(1):112–117

    Article  ADS  Google Scholar 

  27. Thakur JS, Auner GW, Naik VM, Sudakar C, Kharel P, Lawes G, Suryanarayanan R, Naik R (2007) Raman scattering studies of magnetic Co-doped ZnO thin films. J Appl Phys 102:093904

    Article  ADS  Google Scholar 

  28. Ahmed F (2011) Growth and characterization Of ZnO nanorods by microwave-assisted route: green chemistry approach. Adv Mat Lett 2:183–187

    Article  Google Scholar 

  29. Yang J, Gao M, Yang L, Zhang Y, Lang J, Wang D, Wang Y, Liu H, Fan H (2008) Low-temperature growth and optical properties of Ce-doped ZnO nanorods. Appl Surf Sci 255:2646–2650

    Article  ADS  Google Scholar 

  30. Etcheverry LP, Flores WH, da Silva DL, Moreira EC (2018) Annealing Effects on the Structural and Optical Properties of ZnO Nanostructures. Mat Res 21:1–7

    Article  Google Scholar 

  31. Zhang Y, Xie E (2010) Nature of room-temperature ferromagnetism from undoped ZnO nanoparticles. Appl Phys A 99:955–960

    Article  ADS  Google Scholar 

  32. Ghosh P, Sharma AK (2013) Optical characterization and growth mechanism of combination of zinc oxide nanowires and nanorods at various substrate temperatures. J Nanomater 2013:1–9

    Article  Google Scholar 

  33. Xiong G, Pal U, Serrano JG (2007) Correlations among size, defects, and photoluminescence in ZnO nanoparticles. J Appl Phys 101:024317

    Article  ADS  Google Scholar 

  34. Chen KJ, Fang TH, Hung FY, Ji LW, Chang SJ, Young SJ, Hsiao YJ (2008) The crystallization and physical properties of Al-doped ZnO nanoparticles. Appl Surf Sci 254:5791–5795

    Article  ADS  Google Scholar 

  35. Singh NK, Alqudami A, Annapoorni S (2010) ZnO nanoparticles prepared by an electroexploding wire technique. Phys Stat Sol (a) 207:2153–2158

    Article  ADS  Google Scholar 

  36. Cuscó R, Alarcón-Lladó E, Ibáñez J, Artús L, Jiménez J, Wang B, Callahan MJ (2007) Temperature dependence of raman scattering in ZnO. Phys Rev B 75:165202

    Article  ADS  Google Scholar 

  37. Kumar Inwati G, Kumar P, Roos W, Swart H (2020) Thermally induced structural metamorphosis of ZnO: Rb nanostructures for antibacterial impacts. Colloids Surf, B 188:110821

    Article  Google Scholar 

  38. Savu R, Parra R, Joanni E, Jančar B, Eliziário SA, Camargo RD, Bueno PR, Varela JA, Longo E, Zaghete MA (2009) The effect of cooling rate during hydrothermal synthesis of ZnO nanorods. J Cryst Growth 311:4102–4108

    Article  ADS  Google Scholar 

  39. Chauhan S, Kumar M, Chhoker S, Katyal SC, Awana VPS (2013) Structural, vibrational, optical and magnetic properties of sol–gel derived Nd doped ZnO nanoparticles. J Mater Sci: Mater Electron 24:5102–5110

    Google Scholar 

  40. Peng Z, Dai G, Zhou W, Chen P, Wan Q, Zhang Q, Zou B (2010) Photoluminescence and Raman analysis of novel ZnO tetrapod and multipod nanostructures. Appl Surf Sci 256:6814–6818

    Article  ADS  Google Scholar 

  41. Stanković A, Stojanović Z, Veselinović L, Škapin SD, Bračko I, Marković S, Uskoković D (2012) ZnO micro and nanocrystals with enhanced visible light absorption. Mater Sci Eng, B 177:1038–1045

    Article  Google Scholar 

  42. Satpathy SK, Panigrahi UK, Panda SK, Biswal R, Luyten W, Mallick P (2021) Structural, optical, antimicrobial and ferromagnetic properties of Zn1−xLaxO nanorods synthesized by chemical route. J Alloy Compd 865:158937

    Article  Google Scholar 

  43. Kaur M, Kaur P, Kaur G, Dev K, Negi P, Sharma R (2018) Structural, morphological and optical properties of Eu-N co-doped zinc oxide nanoparticles synthesized using co-precipitation technique. Vacuum 155:689–695

    Article  ADS  Google Scholar 

  44. Aldeen TS, Ahmed Mohamed HE, Maaza M (2022) ZnO nanoparticles prepared via a green synthesis approach: physical properties, photocatalytic and antibacterial activity. J Phys Chem Solids 160:110313

    Article  Google Scholar 

  45. Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3:37–46

    Article  Google Scholar 

  46. Rai RC, Guminiak M, Wilser S, Cai B, Nakarmi ML (2012) Elevated temperature dependence of energy band gap of ZnO thin films grown by e-beam deposition. J Appl Phys 111:073511

    Article  ADS  Google Scholar 

  47. Girma T, Siraj K, Yifru A (2016) Defect induced band gap narrowing of zinc oxide nanoparticles using Li+, Na+ and K+ metal ions as a dopant. Elixir Mater. Sci. 91:38058–38062

    Google Scholar 

  48. Otieno F, Airo M, Njoroge EG, Erasmus R, Ganetsos T, Quandt A, Wamwangi D, Billing DG (2019) Effect of implantation of Sm+ ions into RF sputtered ZnO thin film. AIP Adv 9:045210

    Article  ADS  Google Scholar 

  49. Bomila R, Srinivasan S, Venkatesan A, Bharath B, Perinbam K (2018) Structural, optical and antibacterial activity studies of Ce-doped ZnO nanoparticles prepared by wet-chemical method. Mater Res Innovations 22:379–386

    Google Scholar 

  50. Aggarwal N, Kaur K, Vasishth A, Verma NK (2016) Structural, optical and magnetic properties of Gadolinium-doped ZnO nanoparticles. J Mater Sci: Mater Electron 27:13006–13011

    Google Scholar 

  51. Ahmed SA (2017) Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results in Phys 7:604–610

    Article  ADS  Google Scholar 

  52. Caglar M, Ilican S, Caglar Y, Yakuphanoglu F (2008) The effects of Al doping on the optical constants of ZnO thin films prepared by spray pyrolysis method. J Mater Sci: Mater Electron 19:704–708

    Google Scholar 

  53. Mallick P (2017) Effect of solvent on the microstructure and optical band gap of ZnO nanoparticles. Indian J Pure Appl Phys 55:187–192

    Google Scholar 

  54. Kumar V, Singh JK (2010) Model for calculating the refractive index of different materials. Indian J Pure Appl Phys 48:571–574

    Google Scholar 

  55. Hsieh PT, Chen YC, Kao KS, Lee MS, Cheng CC (2007) The ultraviolet emission mechanism of ZnO thin film fabricated by sol–gel technology. J Eur Ceram Soc 27:3815–3818

    Article  Google Scholar 

  56. Hsieh P-T, Chuang RW-K, Chang C-Q, Wang C-M, Chang S-J (2011) Optical and structural characteristics of yttrium doped ZnO films using sol–gel technology. J Sol-Gel Sci Technol 58:42–47

    Article  Google Scholar 

  57. Muthukumaran S, Gopalakrishnan R (2012) Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt Mater 34:1946–1953

    Article  ADS  Google Scholar 

  58. Zhao J, Zhang W, An X, Liu Z, Xie E, Yang C, Chen L (2014) Room-Temperature ferromagnetism in ZnO nanoparticles by electrospinning. Nanosci Nanotechnol Lett 6:446–449

    Article  Google Scholar 

  59. Zhu M, Zhang Z, Zhong M, Tariq M, Li Y, Li W, Jin H, Skotnicova K, Li Y (2017) Oxygen vacancy induced ferromagnetism in Cu-doped ZnO. Ceram Int 43:3166–3170

    Article  Google Scholar 

  60. Seid ET, Dejene FB (2020) Post-heat treatment effect on the properties of indium doped zinc oxide nanocrystals produced by the sol-gel method. Optical Mater Express 10:2849–2865

    Article  ADS  Google Scholar 

  61. Debnath T, Das S, Das D, Sutradhar S (2017) Optical, magnetic and dielectric properties of ZnO: Y nanoparticles synthesized by hydrothermal method. J Alloy Compd 696:670–681

    Article  Google Scholar 

  62. Mishra SK, Srivastava RK, Prakash SG (2012) ZnO nanoparticles: structural, optical and photoconductivity characteristics. J Alloy Compd 539:1–6

    Article  Google Scholar 

  63. Huang K, Tang Z, Zhang L, Yu J, Lv J, Liu X, Liu F (2012) Preparation and characterization of Mg-doped ZnO thin films by sol–gel method. Appl Surf Sci 258:3710–3713

    Article  ADS  Google Scholar 

  64. Peng WQ, Qu SC, Cong GW, Wang ZG (2006) Structure and visible luminescence of ZnO nanoparticles. Mater Sci Semicond Process 9:156–159

    Article  Google Scholar 

  65. Ain Samat N, Md Nor R (2013) Sol–gel synthesis of zinc oxide nanoparticles using Citrus aurantifolia extracts. Ceram Int 39:S545–S548

    Article  Google Scholar 

  66. Srinet G, Kumar R, Sajal V (2014) High Tc ferroelectricity in Ba-doped ZnO nanoparticles. Mater Lett 126:274–277

    Article  Google Scholar 

  67. Rahman MM, Khan MKR, Islam MR, Halim MA, Shahjahan M, Hakim MA, Saha DK, Khanet JU (2012) Effect of Al doping on structural, electrical, optical and photoluminescence properties of nano-structural ZnO thin films. J Mater Sci Technol 28:329–335

    Article  Google Scholar 

  68. Phan T-L, Zhang YD, Yang DS, Nghia NX, Thanh TD (2013) Defect-induced ferromagnetism in ZnO nanoparticles prepared by mechanical milling. Appl Phys Lett 102:072408

    Article  ADS  Google Scholar 

  69. Gao D, Zhang Z, Fu J, Xu Y, Qi J, Xue D (2009) Room temperature ferromagnetism of pure ZnO nanoparticles. J Appl Phys 105:113928

    Article  ADS  Google Scholar 

  70. Lotey GS, Singh J, Verma NK (2013) Room temperature ferromagnetism in Tb-doped ZnO dilute magnetic semiconducting nanoparticles. J Mater Sci: Mater Electron 24:3611–3616

    Google Scholar 

  71. Panigrahi UK, Sathe V, Babu PD, Mitra A, Mallick P (2020) Effect of Mg doping on the improvement of photoluminescence and magnetic properties of NiO nanoparticles. Nano Express 1:020009

    Article  ADS  Google Scholar 

  72. Lin S, Hu H, Zheng W, Qu Y, Lai F (2013) Growth and optical properties of ZnO nanorod arrays on Al-doped ZnO transparent conductive film. Nanoscale Res Lett 8:1–6

    Article  Google Scholar 

  73. Baek S, Song J, Lim S (2007) Improvement of the optical properties of ZnO nanorods by Fe doping. Physica B 399:101–104

    Article  ADS  Google Scholar 

  74. Lang J, Yang J, Li C, Yang L, Han Q, Zhang Y, Wang D, Gao M, Liu X (2008) Synthesis and optical properties of ZnO nanorods. Cryst Res Technol 43:1314–1317

    Article  Google Scholar 

  75. Xia C, Hu C, Zhou P (2013) Low-temperature growth and optical properties of Ce-doped ZnO nanorods. J Exp Nanosci 8:69–76

    Article  Google Scholar 

  76. Pascariu P, Homocianu M, Olaru N, Airinei A, Ionescu O (2020) New Electrospun ZnO:MoO3 Nanostructures: Preparation. Charact Photocatal Perform Nanomater 10:1476

    Google Scholar 

  77. Manukumar KN, Nagaraju G, Kishore B, Madhu C, Munichandraiah N (2018) Ionic liquid-assisted hydrothermal synthesis of SnS nanoparticles: electrode materials for lithium batteries, photoluminescence and photocatalytic activities. J Energy Chem 27:806–812

    Article  Google Scholar 

  78. Priya R, Pandey OP (2018) Hydrothermal synthesis of Eu3+-doped Gd2O3 nanophosphors and its Judd-Ofelt analysis. Vacuum 156:283–290

    Article  ADS  Google Scholar 

  79. Gondia NK, Priya J, Sharma SK (2017) Synthesis and physico-chemical characterization of a schiff base and its zinc complex. Res Chem Intermed 43:1165–1178

    Article  Google Scholar 

  80. Ghose S, Jana D (2019) Defect dependent inverted shift of band structure for ZnO nanoparticles. Mater Res Express 6:105907

    Article  ADS  Google Scholar 

  81. Raji R, Kumar RGA, Gopchandran KG (2019) Influence of local structure on luminescence dynamics of red emitting ZnO:Eu3+ nanostructures and its Judd-Ofelt analysis. J Lumin 205:179–189

    Article  Google Scholar 

  82. Punia K, Lal G, Dalela S, Dolia SN, Alvi PA, Barbar SK, Modi KB, Kumar S (2021) A comprehensive study on the impact of Gd substitution on structural, optical and magnetic properties of ZnO nanocrystals. J Alloy Compd 868:159142

    Article  Google Scholar 

  83. Satyavathi K, Rao MS, Nagabhaskararao Y, Cole S (2017) Synthesis, characterization of undoped and doped Zn3(PO4)2ZnO nanopowders by sol–gel method. J Mater Sci: Mater Electron 28:12226–12238

    Google Scholar 

  84. Deepthi NH, Basavaraj RB, Sharma SC, Revathi J, Ramani SS, Nagabhushana H (2018) Rapid visualization of fingerprints on various surfaces using ZnO superstructures prepared via simple combustion route. J Sci Adv Mater Devices 3:18–28

    Article  Google Scholar 

  85. Amith Yadav HJ, Eraiah B, Nagabhushana H, Daruka Prasad B, Basavaraj RB, Sateesh MK, Shabaaz Begum JP, Darshan GP, Vijayakumar GR (2018) Broad spectral inhibitory effects of pale green zinc oxide nanophosphor on bacterial and fungal pathogens. Arab J Chem 11:324–342

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. V. Sathe of UGC-DAE CSR, Indore, for providing the Raman characterization facility. H.O.D., Dept. of Chemistry, Maharaja Sriram Chandra Bhanja Deo University, Baripada, and H.O.D., Dept. of Physics, Alagappa University, Tamil Nadu, are acknowledged for providing FTIR and PL characterization facilities, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mallick.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satpathy, S.K., Panigrahi, U.K., Biswal, R. et al. Tuning the Optical Properties of ZnO Nanorods Through Gd Doping. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 93, 197–204 (2023). https://doi.org/10.1007/s40010-022-00798-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-022-00798-5

Keywords

Navigation