Skip to main content
Log in

General Estimation Procedures for Population Mean in Successive Cluster Sampling in Presence of Scrambled Response Situation

  • Scientific Research Paper
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

We have addressed the problems of estimation in successive cluster sampling in the presence of scrambled response situation. A generalized class of estimators for population mean in two-occasion successive sampling under two-stage cluster sampling schemes has been suggested. Numerous estimators have been shown as a member of the recommended family. We have derived the properties of the proposed strategy and also found its optimum condition. The superiority of the suggested strategy over the conventional ones has been demonstrated through empirical investigation carried over the data set of real as well as simulated population studies.

Relevance of Our Work in Broad Context

In practical surveys, often it may be seen that a complete list of all the items of study in the population is not available which indicates that drawing a simple random sample is not possible in such cases. For instance, in socioeconomic survey, a list of households is not generally available, whereas a list of residential houses each accommodating a number of households should be available with municipal and other appropriate authorities. In such cases, it may be advisable to draw a simple random sample of houses and survey all the households belonging to sample households. This procedure is known as cluster sampling. It is also a common experience in sample surveys on sensitive data that someone is agreed to response but prefers to hide the true value for avoiding possible social stigma and harassment. These people prefer to hide their true responses. Therefore, the available sample of returns is camouflaged. It is noted that the most of recently developed estimation procedures of successive sampling are based on simple random sampling only and no attempt has been taken for estimation of population parameters in successive sampling under cluster sampling scheme. It is also observed that no significant step has been taken yet to estimate population parameters under cluster sampling in the presence of scrambled response situations. Inspired with these points, we have constructed an estimation technique for population mean in successive cluster sampling in the presence of scrambled response situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jessen RJ (1942) Statistical investigation of a survey for obtaining farm facts. Iowa Agric Exp Stat Res Bull Am USA 304:1–104

    Google Scholar 

  2. Patterson HD (1950) Sampling on successive occasions with partial replacement of units. J R Stat Soc B 12:241–255

    MATH  Google Scholar 

  3. Das AK (1982) Estimation of population ratio on two occasions. J Indian Soc Agric Stat 34:1–9

    Google Scholar 

  4. Sukhatme PV, Sukhatme BV, Sukhatme S, Ashok C (1984) Sampling theory of surveys with applications. Iowa State University Press, Ames

    MATH  Google Scholar 

  5. Singh GN (2005) On the use of chain-type ratio estimator in successive sampling. Stat Transit 7(1):21–26

    Google Scholar 

  6. Singh HP, Vishwakarma GK (2007) A general class of estimators in successive sampling. Metron LXV(2):201–227

    MathSciNet  MATH  Google Scholar 

  7. Singh GN, Priyanka K (2008) Search of good rotation patterns to improve the precision of estimates at current occasion. Commun Stat Theory Methods 37(3):337–348

    Article  MathSciNet  MATH  Google Scholar 

  8. Singh GN, Karna JP (2010) Some imputation methods in to minimize the effect of non-response in two-occasion rotation patterns. Commun Stat Theory Methods 39:3264–3281

    Article  MathSciNet  MATH  Google Scholar 

  9. Singh GN, Prasad S (2011) Some rotation patterns in two-phase sampling. Stat Transit New Ser 12(1):25–44

    MathSciNet  Google Scholar 

  10. Greenberg BG, Kuebler RR, Abernathy JR, Horvitz DG (1971) Application of the randomized response technique in obtaining quantitative data. J Am Stat Assoc 66:243–250

    Article  Google Scholar 

  11. Eichhorn BH, Hayre LS (1983) Scrambled randomized response methods for obtaining sensitive quantitative data. J Statist Plan Inferfaces 7:307–316

    Article  Google Scholar 

  12. Singh GN, Sharma AK, Bandyopadhyay A (2017) Effectual variance estimation strategy in two occasions successive sampling in presence of random non-response. Commun Stat Theory Methods 46(14):7201–7224

    Article  MathSciNet  MATH  Google Scholar 

  13. Singh S (2003) Advanced sampling theory with applications, vol 2. Kluwer, Dordrecht

    Book  Google Scholar 

  14. Singh GK, Rao DK, Khan MGM (2014) Calibration estimator of population mean in stratified random sampling. In: Computer science and engineering (APWC on CSE), 2014 Asia–Pacific World Congress 1–4 Publisher: IEEE, pp 1–5. https://doi.org/10.1109/APWCCSE.2014.7053875

Download references

Acknowledgements

Authors are thankful to Science and Engineering Research Board, Department of Science and Technology, Govt. of India, for funding the research project (File no: EMR/2016/001320) which help us to carry out this research work. For the real-life data, we are indebted to the following organizations for making their data freely available over the internet: Statistical Year Book of India, 2011, Statistical Abstract of United States, 2010. We are also highly obliged to the reviewer and editor for their patient reading and offering valuable suggestions to ameliorate the quality of paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chowdhury Sadeka Nazrin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Important results relating actual and scrambled study variables:

Result 1: \(S_{{O^{*} }}^{*} \, = \, (S_{O}^{{*^{2} }} + \overline{Y}_{..}^{2} ) \, S_{T}^{{*^{2} }} \, + \, S_{O}^{{*^{2} }} \overline{T}_{..}^{*}\).

Proof

We prove the above relation by using the following relationship

$$ y^{*} \, = \, yT^{*} , \, \overline{y}_{i.}^{*} \, = \, \overline{y}_{i.} T_{i.}^{*} , \, \overline{y}_{..}^{*} \, = \, \overline{y}_{..} \overline{T}_{..}^{*} $$
$$ \begin{aligned} S_{{O^{*} }}^{*} & = E(\overline{y}_{i.}^{{*^{2} }} ) - (\overline{y}_{..}^{*} )^{2} \\ & = E(\overline{y}_{i.}^{2} T_{i.}^{{*^{2} }} ) - (\overline{y}_{..} \overline{T}_{..}^{*} ) \\ & = E(\overline{y}_{i.}^{2} ) \, E(T_{i.}^{{*^{2} }} ) - (\overline{y}_{..} \overline{T}_{..}^{*} )^{2} \\ & = (S_{O}^{{*^{2} }} + \overline{Y}_{..}^{2} ) \, (S_{T}^{{*^{2} }} + T_{..}^{{*^{2} }} ) - (\overline{Y}_{..} \overline{T}_{..}^{*} )^{2} \\ & = (S_{O}^{{*^{2} }} + \overline{Y}_{..}^{2} ) \, S_{T}^{{*^{2} }} \, + \, S_{O}^{{*^{2} }} \overline{T}_{..}^{*} \\ & \Rightarrow S_{{O^{*} }}^{*} = (S_{O}^{{*^{2} }} + \overline{Y}_{..}^{2} )S_{T}^{{*^{2} }} + S_{O}^{{*^{2} }} \overline{T}_{..}^{*} . \\ \end{aligned} $$

Proof

$$ \begin{aligned} \overline{S}_{{0^{*} }}^{{*^{2} }} & = \mathop E\limits_{i} [\mathop E\limits_{j} (y_{ij}^{{*^{2} }} ) - \mathop E\limits_{j} (\overline{y}_{i.}^{*} )^{2} ] \\ & = E[\mathop E\limits_{j} (y_{ij}^{2} T_{ij}^{{*^{2} }} ) - \mathop E\limits_{j} (\overline{y}_{i.} \overline{T}_{i.}^{*} )^{2} ]_{{y^{*} = yT^{*} }} \\ & = \mathop E\limits_{i} [E(y_{ij}^{2} ) \, E(T_{ij}^{{*^{2} }} ) - \overline{y}_{i.}^{2} \overline{T}_{i.}^{{*^{2} }} ] \\ & = \, E[(S_{0i}^{2} + \overline{y}_{i.}^{2} ) \, (S_{{T_{i} }}^{2} + \overline{T}_{i.}^{{*^{2} }} ) \, - \, \overline{y}_{i.}^{2} \overline{T}_{i.}^{{*^{2} }} ] \\ & = \, E[S_{0i}^{2} S_{{T_{i} }}^{2} + S_{0i}^{2} \overline{T}_{i.}^{{*^{2} }} + \overline{y}_{i.}^{2} S_{{T_{i} }}^{2} ] \\ & = E[(S_{0i}^{2} + \overline{y}_{i.}^{2} )S_{{T_{i} }}^{2} + S_{9i}^{2} \overline{T}_{i.}^{*} ] \\ & = \, E(S_{0i}^{2} )E(S_{{T_{i} }}^{2} ) + E(\overline{y}_{i.}^{2} )E(S_{{T_{i} }}^{2} ) + E(S_{0i}^{2} )E(\overline{T}_{i.}^{*} ) \\ & = \, \overline{S}_{0}^{2} \overline{S}_{T}^{2} + (S_{o}^{2} + \overline{y}_{..}^{2} )(\overline{S}_{T}^{2} ) + \overline{S}_{0}^{2} (S_{T}^{{*^{2} }} + \overline{T}_{..}^{*2} ) \\ & {\text{So, }}\overline{S}_{{0^{*} }}^{{*^{2} }} \, = \, \overline{S}_{0}^{2} \overline{S}_{T}^{2} + (S_{o}^{2} + \overline{y}_{..}^{2} )(\overline{S}_{T}^{2} ) + \overline{S}_{0}^{2} (S_{T}^{{*^{2} }} + \overline{T}_{..}^{*2} ) \\ \end{aligned} $$

Similarly, \(\overline{S}_{{1^{*} }}^{{*^{2} }} \, = \, \overline{S}_{1}^{2} \overline{S}_{T}^{2} + (S_{1}^{2} + \overline{X}_{..}^{2} )(\overline{S}_{T}^{2} ) + \overline{S}_{1}^{2} (S_{T}^{{*^{2} }} + \overline{T}_{..}^{*2} )\).

Proof

$$ \begin{aligned} S_{{01^{*} }}^{*} & = E[\overline{Y}_{i.}^{*} \overline{X}{}_{i.}^{*} ] - \overline{Y}_{..}^{*} \overline{X}_{..}^{*} \\ & = E[\overline{Y}_{i.} T_{i.}^{*} \, \overline{X}_{i.} T_{i.}^{*} ] - \overline{Y}_{..}^{*} \overline{X}_{..}^{*} \\ & = (S_{T}^{{*^{2} }} + \overline{T}_{..}^{*2} )E(\overline{Y}_{i.} \overline{X}_{i.} ) - \overline{Y}_{..} \overline{X}_{..} \overline{T}_{..}^{*2} . \\ \end{aligned} $$

So, \(S_{{01^{*} }}^{*}\) = \((S_{T}^{{*^{2} }} + \overline{T}_{..}^{*2} )E(\overline{Y}_{i.} \overline{X}_{i.} ) - \overline{Y}_{..} \overline{X}_{..} \overline{T}_{..}^{*2} .\)

Proof

$$ \begin{aligned} & \mathop E\limits_{i} [\mathop E\limits_{j} (y_{ij}^{*} x_{ij}^{*} ) - \mathop {E(y_{ij}^{*} ) \, E(x_{ij}^{*} )]}\limits_{j} \\ & \quad = \mathop E\limits_{i} [\mathop E\limits_{j} (Y_{ij} T_{ij}^{*} \, X_{ij} T_{ij}^{*} ) - (\overline{Y}_{i.} T_{i.}^{*} )(\overline{X}_{i.} T_{i.}^{*} )]_{{y^{*} \, = \, YT^{*} }} \\ & \quad = \mathop E\limits_{i} [\mathop E\limits_{j} (T_{ij}^{{*^{2} }} )E(Y_{ij} X_{ij} ) - \overline{Y}_{i.} \overline{X}_{i.} T_{i.}^{{*^{2} }} ] \\ & \quad = \mathop E\limits_{i} [(S_{{T_{i.} }}^{2} + \overline{T}_{i.}^{{*^{2} }} )\mathop E\limits_{j} (Y_{ij} X_{ij} ) - \overline{Y}_{i.} \overline{X}_{i.} T_{i.}^{{*^{2} }} ] \\ & \quad = \mathop E\limits_{i} [\overline{T}_{i.}^{{*^{2} }} [\mathop E\limits_{j} (Y_{ij} X_{ij} )\mathop E\limits_{j} (Y_{ij} )\mathop E\limits_{i} (X_{ij} )]] + S_{{T_{i.} }}^{2} \mathop E\limits_{j} (Y_{ij} X_{ij} ) \\ \end{aligned} $$
$$ \begin{aligned} S_{{01^{*} }} & = \mathop E\limits_{j} (Y_{ij} X_{ij} ) - \mathop E\limits_{j} (Y_{ij} )(X_{ij} ) \\ & = \, \frac{1}{M - 1}\sum\limits_{j = 1}^{M} {(Y_{ij} - \overline{Y}_{i.} )(X_{ij} - \overline{X}_{i.} )} \\ & = \mathop E\limits_{i} [T_{i.}^{*2} S_{01i} + S_{{T_{i.} }}^{2} \frac{1}{M - 1}\sum\limits_{j = 1}^{M} {Y_{ij} X_{ij} } ] \\ \overline{S}_{01}^{*} = (S_{{T^{*} }}^{2} + \overline{T}_{..}^{{*^{2} }} )E(S_{01i} ) + \overline{S}_{{T^{*} }}^{2} \frac{1}{NM}\sum\limits_{i = 1}^{N} {\sum\limits_{j = 1}^{M} {Y_{ij} X_{ij} } } \\ & {\text{So, }}\overline{S}_{01}^{*} = (S_{{T^{*} }}^{2} + \overline{T}_{..}^{{*^{2} }} )\overline{S}_{01} + \overline{S}_{{T^{*} }}^{2} \frac{1}{NM}\sum\limits_{i = 1}^{N} {\sum\limits_{j = 1}^{M} {Y_{ij} X_{ij} } } \\ & {\text{Similarly, }}\overline{S}_{02}^{*} = (S_{{T^{*} }}^{2} + \overline{T}_{..}^{{*^{2} }} )\overline{S}_{02} + \overline{S}_{{T^{*} }}^{2} \frac{1}{NM}\sum\limits_{i = 1}^{N} {\sum\limits_{j = 1}^{M} {Y_{ij} Z_{ij} } } \\ & \overline{S}_{12}^{*} = (S_{{T^{*} }}^{2} + \overline{T}_{..}^{{*^{2} }} )\overline{S}_{12} + \overline{S}_{{T^{*} }}^{2} \frac{1}{NM}\sum\limits_{i = 1}^{N} {\sum\limits_{j = 1}^{M} {X_{ij} Z_{ij} } } \\ \end{aligned} $$

Similarly, \(X^{*} = XT^{*}\)

$$ \begin{gathered} S_{{1^{*} }}^{*} = (S_{1}^{{*^{2} }} + \overline{X}_{..}^{2} ) \, S_{T}^{{*^{2} }} + S_{1}^{{*^{2} }} \overline{T}_{..}^{*} \hfill \\ S_{{2^{*} }}^{*} = (S_{2}^{{*^{2} }} + \overline{Z}_{..}^{2} ) \, S_{T}^{{*^{2} }} + S_{2}^{{*^{2} }} \overline{T}_{..}^{*} , \hfill \\ \end{gathered} $$

where

$$ \begin{gathered} S_{O}^{*} = E[\overline{y}_{i.}^{2} ] - \overline{Y}_{..}^{2} \hfill \\ S_{T}^{*} = E[T_{i.}^{{*^{2} }} ] - \overline{T}_{..}^{*2} . \hfill \\ \end{gathered} $$

Result 2:

$$ \overline{S}_{{0^{*} }}^{{*^{2} }} \, = \, \overline{S}_{0}^{2} \overline{S}_{T}^{2} + (S_{o}^{2} + \overline{y}_{..}^{2} )(\overline{S}_{T}^{2} ) + \overline{S}_{0}^{2} (S_{T}^{{*^{2} }} + \overline{T}_{..}^{*2} ). $$

and, \(\overline{S}_{{2^{*} }}^{{*^{2} }} = \overline{S}_{2}^{2} \overline{S}_{T}^{2} + (S_{2}^{2} + \overline{z}_{..}^{2} )(\overline{S}_{T}^{2} ) + \overline{S}_{2}^{2} (S_{T}^{{*^{2} }} + \overline{T}_{..}^{*2} ),\)

where \(S_{0i}^{2} = \frac{1}{m - 1}\sum\limits_{j = 1}^{m} {(y_{ij} - \overline{y}_{i.} )^{2} } E[y_{ij} - \overline{y}_{i.} ]^{2}\)

\(= E[y_{ij}^{2} ] - [\overline{y}_{i.}^{2} ]\)

$$ \begin{aligned} S_{0}^{2} & = E(y_{i.}^{2} ) - \overline{y}_{..}^{2} \\ \overline{S}_{T}^{2} & = \frac{1}{N}\sum\limits_{i = }^{N} {S_{{T_{i} }}^{2} } \\ \overline{S}_{0}^{2} & = \frac{1}{N}\sum\limits_{i = }^{N} {S_{{0_{i} }}^{2} } \\ S_{{T_{i} }}^{2} & = \frac{1}{m - 1}\sum\limits_{j = 1}^{m} {(T_{ij}^{*} - T_{i.}^{*2} )} \\ & = E[T_{ij}^{*} - \overline{T}_{i.}^{*} ]^{2} \\ & = E[T_{ij}^{*} ]^{2} - T_{i.}^{{*^{2} }} \\ S_{{T^{*} }}^{{*^{2} }} & = E(T_{i.}^{{*^{2} }} ) - \overline{T}_{i.}^{{*^{2} }} \\ \end{aligned} $$

Result 3: \(S_{{01^{*} }}^{*} = \, \frac{1}{N - 1}\sum\limits_{i = 1}^{N} {(\overline{Y}_{i.} - \overline{Y}_{..} )(\overline{X}_{i.} - \overline{X}_{..} )} ,\)

where

$$ \text{Cov}(\overline{Y}_{i.} \overline{X}_{i.} ) = E[\overline{Y}_{i.} \overline{X}_{i.} ] - E[\overline{Y}_{i.} ] \, E[\overline{X}_{i.} ]. $$

Similarly, \(S_{{02^{*} }}^{*}\) = \((S_{T}^{{*^{2} }} + \overline{T}_{..}^{*2} )E(\overline{Y}_{i.} \overline{Z}_{i.} ) - \overline{Y}_{..} \overline{Z}_{..} \overline{T}_{..}^{*2} .\)

$$ S_{{12^{*} }}^{*} = (S_{T}^{{*^{2} }} + \overline{T}_{..}^{*2} )E(\overline{X}_{i.} \overline{Z}_{i.} ) - \overline{X}_{..} \overline{Z}_{..} \overline{T}_{..}^{*2} , $$

where \(S_{T}^{*} = E(T_{i.}^{{*^{2} }} ) - \overline{T}_{..}^{*2} ,E(T_{i.}^{{*^{2} }} ) = S_{T}^{{*^{2} }} + \overline{T}_{..}^{*2} ,\)

$$ \begin{aligned} \overline{Y}_{..}^{*} \overline{X}_{..}^{*} & = E[\overline{Y}_{i.}^{*} ] \, E[\overline{X}_{i.}^{*} ] \, \\ & = \, E[Y_{i.} T_{i.}^{*} ] - E[X_{i.} T_{i.}^{*} ] \, \\ & = E[\overline{Y}_{i.} ] \, E[\overline{X}_{i.} ] \, E[T_{i.}^{*} ] \, E[T_{i.}^{*} ] \, \\ & = \overline{Y}_{..} \overline{X}_{..} \overline{T}_{..}^{*2} . \\ \end{aligned} $$

Result 4:\(\overline{S}_{01}^{*} = \mathop E\limits_{i} [\mathop E\limits_{j} (y_{ij}^{*} x_{ij}^{*} ) - \mathop {E(y_{ij}^{*} ) \, E(x_{ij}^{*} )}\limits_{j} ]\).

$$ \begin{aligned} {\text{where }}\text{Cov}(x,y) & = \, \frac{1}{N}\sum\limits_{i = 1}^{N} {(x_{i} - \overline{x})} (y_{i} - \overline{y}) \\ S_{{T_{i.} }}^{2} & = \, \mathop E\limits_{j} [T_{ij}^{*2} ] - \mathop E\limits_{j} [T_{ij}^{*} ]^{2} \\ & = \, \frac{1}{M - 1}\sum\limits_{j = 1}^{M} {(T_{ij}^{*} - \overline{T}_{ij}^{*} )^{2} } \\ \end{aligned} $$
$$ \eqalign{& S_{{T_{i.}}}^2 = \mathop E\limits_j [T_{ij}^{*2}] - \bar T_{i.}^{*2} \cr & \quad \quad = \mathop E\limits_j {(T_{ij}^*)^2} - [T_{ij}^*] \cr & \mathop E\limits_j {(T_{ij}^*)^2} = S_{{T_{i.}}}^2 + \bar T_{i.}^{{*^2}} \cr & V(\bar y) = \frac{1}{{N - 1}}{\sum\limits_{i = 1}^N {({Y_i} - \bar Y)} ^2} = E(Y_i^2) - {{\bar Y}^2} \cr & S_{{T^*}}^2 = \frac{1}{{N - 1}}{\sum\limits_{i = 1}^N {(T_{i.}^* - \bar T_{..}^*)} ^2} = {\text{ }}\mathop E\limits_i (T_{i.}^{*2}) - T_{..}^{*2} \cr & S_{{T_{i.}}}^2 = \frac{1}{{M - 1}}\sum\limits_{j = }^M {(T_{ij}^* - \bar T_{i.}^{{*^2}})} \cr & \bar S_{{T^*}}^2 = \frac{1}{N}\sum\limits_{i = 1}^N {S_{{T_{i.}}}^2} \cr} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazrin, C.S., Bandyapadhya, A. & Gupta, A. General Estimation Procedures for Population Mean in Successive Cluster Sampling in Presence of Scrambled Response Situation. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 93, 95–105 (2023). https://doi.org/10.1007/s40010-022-00785-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-022-00785-w

Keywords

AMS Subject Classification

Navigation