Skip to main content
Log in

Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers’ and Burgers’ Equations

Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we present an accurate numerical method to compute the approximate solutions of the Korteweg–de Vries, Korteweg–de Vries–Burger’s and Burger’s equations with Liouville–Caputo fractional space derivatives, respectively. We implement the spectral collocation method based on the shifted Chebyshev polynomials. The method reduces each model to a set of ODEs which is solved by using the finite difference method. The results obtained by the proposed method are compared with exact solutions, the q-homotopy analysis transform method and the variational iteration method. The efficiency and the accuracy of the results were ascertained by comparing the approximate solution with the exact solution in the case of classical models and evaluating the residual error function in the case of fractional models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Inc M (2008) The approximate and exact solutions of the space-and-time-fractional Burger’s equations with initial conditions by VIM. J Math Anal Appl 345:476–484

    Article  MathSciNet  Google Scholar 

  2. Diethelm K (1997) An algorithm for the numerical solution of differential equations of fractional order. Electron Trans Numer Anal 5:1–6

    MathSciNet  MATH  Google Scholar 

  3. Jafari H, Daftardar-Gejji V (2006) Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition. Appl Math Comput 180:488–497

    MathSciNet  MATH  Google Scholar 

  4. Jiwari R, Yuan J (2014) A computational modeling of two dimensional reaction–diffusion Brusselator system arising in chemical processes. J Math Chem 52:1535–1551

    Article  MathSciNet  Google Scholar 

  5. Mittal RC, Jiwari R (2011) Numerical solution of two-dimensional reaction–diffusion Brusselator system. Appl Math Comput 217(12):5404–5415

    MathSciNet  MATH  Google Scholar 

  6. Jiwari R (2015) A hybrid numerical scheme for the numerical solution of the Burgers’ equation. Comput Phys Commun 188:59–67

    Article  MathSciNet  ADS  Google Scholar 

  7. Jiwari R (2012) Haar wavelet quasilinearization approach for numerical simulation of Burgers’ equation. Comput Phys Commun 183:2413–2423

    Article  MathSciNet  ADS  Google Scholar 

  8. Jiwari R, Mittal RC, Sharma KK (2013) A numerical scheme based on weighted average differential quadrature method for the numerical solution of Burgers’ equation. Appl Math Comput 219:6680–6691

    MathSciNet  MATH  Google Scholar 

  9. Yadav OP, Jiwari R (2017) Finite element analysis and approximation of Burger’s–Fisher equation. Numer Methods Partial Differ Equ 33(5):1652–1677

    Article  MathSciNet  Google Scholar 

  10. Singh J, Kumar D, Swroop R, Kumar S (2017) An efficient computational approach for time-fractional Rosenau–Hyman equation. Neural Comput Appl 30(6):1–10

    MATH  Google Scholar 

  11. Singh J, Kumar D, Baleanu D, Rathore S (2019) On the local fractional wave equation in fractal strings. Math Methods Appl Sci. https://doi.org/10.1002/mma.5458

    Article  MathSciNet  MATH  Google Scholar 

  12. Singh J, Kumar D, Baleanu D, Rathore S (2018) An efficient numerical algorithm for the fractional Drinfeld–Sokolov–Wilson equation. Appl Math Comput 335:12–24

    MathSciNet  MATH  Google Scholar 

  13. Singh J, Kumar D, Baleanu D (2018) On the analysis of fractional diabetes model with exponential law. Adv Differ Equ. https://doi.org/10.1186/s13662-018-1680-1

    Article  MathSciNet  MATH  Google Scholar 

  14. Khader MM, Saad KM (2018) A numerical approach for solving the problem of biological invasion (fractional Fisher equation) using Chebyshev spectral collocation method. Chaos Solitons Fractals 110:169–177

    Article  MathSciNet  ADS  Google Scholar 

  15. Khader MM, Saad KM (2018) On the numerical evaluation for studying the fractional KdV, KdV-Burger’s, and Burger’s equations. Eur Phys J Plus 133(335):1–13

    Google Scholar 

  16. Khader MM, Saad KM (2018) A numerical study using Chebyshev collocation method for a problem of biological invasion: fractional Fisher equation. Int J Biomath 11(8):1–15

    Article  MathSciNet  Google Scholar 

  17. Singh J, Kumar D, Hammouch Z, Atangana A (2018) A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl Math Comput 316:504–515

    MathSciNet  MATH  Google Scholar 

  18. Kumar D, Singh J, Baleanu D, Rathore S (2018) Analysis of a fractional model of Ambartsumian equation. Eur J Phys Plus 133:159–162

    Article  Google Scholar 

  19. Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  20. Feng Z (2003) Travelling wave solutions and proper solutions to the two-dimensional Burger’s–Korteweg–de Vries equation. J Phys A 36:8817–8827

    Article  MathSciNet  ADS  Google Scholar 

  21. Kath WL, Smyth NF (1965) Interaction of soliton evolution and radiation loss for the Korteweg–de Vries equation. Phys Rev E 51:661–670

    Article  ADS  Google Scholar 

  22. Zabusky NJ, Kruskal MD (1965) Interaction of “Solitons” in a collisionless plasma and the recurrence of initial states. Phys Rev Lett 15:240–243

    Article  ADS  Google Scholar 

  23. Johnson RS (1970) A non-linear equation incorporating damping and dispersion. J Fluid Mech 42:49–60

    Article  MathSciNet  ADS  Google Scholar 

  24. Feng Z (2007) On travelling wave solutions of the KdV. Nonlinearity 20:343–356

    Article  MathSciNet  ADS  Google Scholar 

  25. Whitham GB (1974) Linear and nonlinear waves. Wiley, New York

    MATH  Google Scholar 

  26. Zhang Y, Baleanu D, Yang XJ (2016) New solutions of the transport equations in porous media within local fractional derivative. Proc Rom Acad 17:230–236

    MathSciNet  Google Scholar 

  27. Tadjeran MA, Meerschaert MM (2007) A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J Comput Phys 220:813–823

    Article  MathSciNet  ADS  Google Scholar 

  28. Snyder MA (1966) Chebyshev methods in numerical approximation. Prentice-Hall, Inc., Englewood Cliffs

    MATH  Google Scholar 

  29. Khader MM (2011) On the numerical solutions for the fractional diffusion equation. Commun Nonlinear Sci Numer Simul 16:2535–2542

    Article  MathSciNet  ADS  Google Scholar 

  30. Khader MM, Babatin MM (2014) Numerical treatment for solving fractional SIRC model and influenza A. Comput Appl Math 33(3):543–556

    Article  MathSciNet  Google Scholar 

  31. Saad KM, Dumitru B, Abdon A (2018) New fractional derivatives applied to the Korteweg–de Vries and Korteweg–de Vries–Burger’s equations. Comput Appl Math 37(6):1–14

    MathSciNet  MATH  Google Scholar 

  32. Saad KM, Al-Sharif EHF (2017) Analytical study for time and time-space fractional Burger’s equation. Adv Differ Equ 300:1–15

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled M. Saad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khader, M.M., Saad, K.M. Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers’ and Burgers’ Equations. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 91, 67–77 (2021). https://doi.org/10.1007/s40010-020-00656-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-020-00656-2

Keywords

Mathematics Subject Classification

Navigation