Skip to main content
Log in

Gamma Radiation Studies on Organic Nonlinear Optical Materials in the Energy Range 122–1330 keV

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

Gamma ray mass attenuation of some nonlinear optical (NLO) materials has been studied experimentally using transmission experiment in the energy range 122–1330 keV. The selected NLO materials were radiated by radioactive point sources (57Co, 133Ba, 22Na, 137Cs and 60Co) of strength 5 mCi. Theoretical values were calculated on the basis of mixture rule using WinXCOM program. Good agreement between theoretical and experimental values was observed. Gamma ray mass attenuation coefficient (μm) values were used to determine other radiological parameters such as σt,a, σt,el, Zeff and Neff. The behavior of μm with the incident photon energy (E) has been discussed. From the obtained results, it is observed that the radiological parameters are affected severely by increasing the intensity of photon energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Suresh Kumar MR, Ravindra HJ, Dharmaprakash SM (2007) Synthesis, crystal growth and characterization of glycine lithium sulphate. J Cryst Growth 306:361–365

    Article  ADS  Google Scholar 

  2. Chemla DS, Zyss J (1987) Nonlinear optical properties of organic molecules and crystals, vol 1. Academic, Orland

    Google Scholar 

  3. Bhadauria S, Das M, Saxena S, Prasad R, Sen P, Dwivedi R (2011) Recent progress in non-linear optical material, syntheses, characterization and geometry optimization of dicinnamalacetone. Arch Phys Res 2:36–44

    Google Scholar 

  4. Baltas H, Celik S, Cevik U, Yamaz E (2007) Measurements of mass attenuation coefficient and effective atomic number for MgB2 using X-ray energies. Radiat Meas 42:55–60

    Article  Google Scholar 

  5. Manohara SR, Hanagodimath SM (2007) Studies on effective atomic numbers and electron densities of essential amino acids in the energy range 1 keV–100 GeV. Nucl Instrum Methods Phys Res B 258:321–328

    Article  ADS  Google Scholar 

  6. Medhat ME, Singh VP (2014) Mass attenuation coefficients of composite materials by Geant4, XCOM and experimental data: comparative study. Radiat Eff Defects Solids 169:800–807

    Article  ADS  Google Scholar 

  7. Medhat ME, Demir N, Tarim UA, Gurler O (2014) Calculation of gamma-ray mass attenuation coefficients of some Egyptian soil samples using Monte Carlo methods. Radiat Eff Defects Solids 169:706–714

    Article  ADS  Google Scholar 

  8. Tekin HO (2016) MCNP-X Monte Carlo Code application for mass attenuation coefficients of concrete at different energies by modeling 3 × 3 inch NaI (Tl) detector and comparison with XCOM and Monte Carlo data. Science and technology of nuclear installations

  9. Singh VP, Shirmardi SP, Medhat ME, Badiger NM (2015) Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation. Vacuum 119:284–288

    Article  ADS  Google Scholar 

  10. Bhosale RR, Gaikwad DK, Pawar PP, Rode MN (2016) Interaction studies and Gamma-Ray properties of some low-z materials. Nucl Technol Radiat Prot 31(2):135–141

    Article  Google Scholar 

  11. Kumar A, Gaikwad DK, Obaid SS, Tekin HO, Agar O, Sayyed MI (2019) Experimental studies and Monte Carlo simulations on gamma ray shielding competence of (30 + x) PbO–10WO3–10Na2O–10MgO-(40-x)–B2O3 glasses. Prog Nucl Energy 1:1. https://doi.org/10.1016/j.pnucene.2019.103047

    Article  Google Scholar 

  12. Han I, Demir L, Sahin M (2009) Determination of mass attenuation coefficient, effective atomic number and electron number for some natural minerals. Radiat Phys Chem 78:760–764

    Article  ADS  Google Scholar 

  13. Han I, Demir L (2009) Studies on mass attenuation coefficient, effective atomic and electron number of Ti and Ni alloy. Radiat Meas 44:289–294

    Article  Google Scholar 

  14. Hubbell JH (1982) Photon mass attenuation and energy absorption. Int J Appl Radiat Isot 33:1269–1290

    Article  Google Scholar 

  15. Hubbell JH, Seltzer SM (1995) Tables of X-ray mass attenuation coefficients and mass energy absorption coefficients 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest (No. PB-95-220539/XAB; NISTIR-5632). National Inst. of Standards and Technology-PL, Gaithersburg, MD (United States). Ionizing Radiation Div

  16. Berger MJ, Hubbell JH (1987) XCOM: photon cross section on a personal computer. No. NBSIR-87-3597. National Bureau of Standards

  17. Gerward L, Guilbert N, Jensen KB, Levring H (2004) WinXCOM-A program for calculating X-ray attenuation coefficients. Radiat Phys Chem 71:653–654. https://doi.org/10.1016/j.radphyschem.2004.04.040

    Article  ADS  Google Scholar 

  18. Kaewkhao J, Laopaiboon J, Chewpraditkul W (2008) Determination of effective atomic numbers and effective electron densities for Cu/Zn alloy. J Quant Spectrosc Radioact Transf 109:1260–1265. https://doi.org/10.1016/j.jqsrt.2007.10.007

    Article  ADS  Google Scholar 

  19. Gaikwad DK, Sayyed MI, Botewad SN, Obaid Shamsan S, Khattari ZY, Gawai UP, Afaneh Feras, Shirshat MD, Pawar PP (2019) Physical, structural, optical investigation and shielding features of tungsten bismuth tellurite based glasses. J Non-Cryst Solids 503–504:158–168

    Article  ADS  Google Scholar 

  20. Obaid SS, Sayyed MI, Gaikwad DK, Tekin HO, Elmahroug Y, Pawar PP (2018) Photon attenuation coefficients of different rock samples using MCNPX Geant4 simulation codes and experimental results: a comparison study. Radiat Eff Defects Solids 173(1–15):900–914

    Article  Google Scholar 

  21. Gaikwad DK, Pawar PP, Selvam TP (2016) Attenuation cross sections measurements of some fatty acids in the energy range 122–1330 keV. Pramana J Phys 87:12

    Article  ADS  Google Scholar 

  22. Awasarmol VV, Gaikwad DK, Raut SD, Pawar PP (2017) Photon interaction study of organic nonlinear optical materials in the energy range 122–1330 keV. Radiat Phys Chem 130:343–350

    Article  ADS  Google Scholar 

  23. Awasarmol VV, Gaikwad DK, Raut SD, Pawar PP (2017) Gamma ray interaction studies of organic nonlinear optical materials in the energy range 122 keV to 1330 keV. Results Phys 7:272–279

    Article  ADS  Google Scholar 

  24. Awasarmol VV (2017) Gamma ray attenuation parameters of inorganic nonlinear optical materials in the energy ranges 122 keV to 1330 keV. Indian J Pure Appl Phys 55:65–72

    Google Scholar 

  25. Bhosale RR, Gaikwad DK, Pawar PP, Rode MN (2016) Effects of gamma irradiation on some chemicals using an NaI (Tl) detector. Radiat Eff Defects Solids 171(5–6):398–407

    Article  ADS  Google Scholar 

  26. Gaikwad DK, Pawar PP, Selvam TP (2017) Mass attenuation coefficients and effective atomic numbers of biological compounds for gamma ray interactions. Radiat Phys Chem 138:75–80

    Article  ADS  Google Scholar 

  27. Gowda S, Krishnaveni S, Gowda R (2005) Studies on effective atomic number and electron densities in amino acids and sugar in the energy range 30–1333 keV. Nucl Instrum Methods Phys Res B Beam Interact Mater Atoms 239:361–369

    Article  ADS  Google Scholar 

  28. El-Kateb AH, Rizk RAM, Abdul-Kadar AM (2000) Determination of atomic cross-section and effective atomic numbers for some alloy. Ann Nucl Energy 27:1333–1343

    Article  Google Scholar 

  29. Jackson DF, Hawkes DJ (1981) X-ray attenuation coefficients of elements and mixtures. Phys Rep 70:169–233

    Article  ADS  Google Scholar 

  30. Hine GJ (1952) The effective atomic numbers of materials for various gamma interactions. Phys Rev 85:725–737

    Google Scholar 

  31. Kurudirek M, Onaran T (2015) Calculation of effective atomic number and electron density of essential biomolecules for electron, proton, alpha particle and multi-energetic photon interactions. Radiat Phys Chem 112:125–138

    Article  ADS  Google Scholar 

  32. Murthy VRK (2004) Effective atomic number for W/Cu alloy for total photon attenuation. Radiat Phys Chem 71:667–669

    Article  ADS  Google Scholar 

  33. Limkitjaroenporn P, Kaewkhao J, Asavavisithchai S (2013) Determination of mass attenuation coefficients and effective atomic numbers for Inconel 738 alloy for different energies obtained from Compton scattering. Ann Nucl Energy 53:64–68

    Article  Google Scholar 

  34. Demir D, Tursucu A, Oznuluer T (2012) Studies on mass attenuation coefficient, effective atomic number and electron density of some vitamins. Radiat Environ Biophys 51:469–475

    Article  Google Scholar 

  35. Chanthima N, Kaewkhao J, Limsuwan P (2012) Study of photon interactions and shielding properties of silicate glasses containing Bi2O3, BaO and PbO in the energy region of 1 keV to 100 GeV. Ann Nucl Energy 41:119–124

    Article  Google Scholar 

  36. Sayyed MI, Elbashir BO, Tekin HO, Altunsoy EE, Gaikwad DK (2018) Radiation shielding properties of pentaternary borate glasses using MCNPX code. J Phys Chem Solids 121:17–21

    Article  ADS  Google Scholar 

  37. Salehi D, Sardari D, Jozani MS (2015) Investigation of some radiation shielding parameters in soft tissue. J Radiat Res Appl Sci 8:439–445

    Article  Google Scholar 

  38. Creagh DC (1987) The resolution of discrepancies in tables of photon attenuation coefficient. Nucl Instrum Methods A 255:1–16

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Awasarmol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awasarmol, V.V., Gaikwad, D.K., Obaid, S.S. et al. Gamma Radiation Studies on Organic Nonlinear Optical Materials in the Energy Range 122–1330 keV. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 90, 839–844 (2020). https://doi.org/10.1007/s40010-019-00636-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-019-00636-1

Keywords

Navigation