Skip to main content
Log in

Electronic Structure Explanation for the Structure and Reactivity of di-n-Butyltin(IV) Derivative of Glycylphenylalanine

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

The density functional theory (DFT)-based quantum-chemical calculations have been performed on di-n-butyltin(IV) derivative of glycylphenylalanine (H2L) using the Gaussian 09 software package. The molecular geometry of n-Bu2SnL was optimized at B3LYP/6-31G(d,p)/LANL2DZ(Sn) level of theory without any symmetry constraint. The harmonic vibrational frequencies were computed at the same level of theory to find the true potential energy surface (PES) minima. The various geometrical and thermochemical parameters for the studied complex are obtained in the gas phase. The atomic charges at all the atoms were calculated using Mulliken Population Analysis, Hirshfeld Population Analysis and Natural Population Analysis. The charge distribution within the studied complex is explained on the basis of molecular electrostatic potential maps, the frontier molecular orbital analysis and conceptual-DFT-based reactivity (global as well as local) descriptors, using the finite difference approximation method. The nature of O–Sn, N–Sn, N → Sn and C–Sn bonds is discussed in terms of the conceptual-DFT-based reactivity descriptors. The structural analysis of the studied complex has been carried out in terms of the selected bond lengths and bond angles. The structural and atomic charge analysis suggests a distorted trigonal bipyramidal arrangement consisting of negatively charged centres around the positively charged central Sn atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nath M (2008) Toxicity and the cardiovascular activity of organotin compounds: a review. Appl Organomet Chem 22:598–612

    Article  Google Scholar 

  2. Pellerito L, Nagy L (2002) Organotin(IV)n+ complexes formed with biologically active ligands: equilibrium and structural studies, and some biological aspects. Coord Chem Rev 224:111–150

    Article  Google Scholar 

  3. Alama A, Tasso B, Novelli F, Sparatore F (2009) Organometallic compounds in oncology: implications of novel organotins as antitumor agents. Drug Discov Today 14:500–508

    Article  Google Scholar 

  4. Carraher CE, Roner MR (2014) Organotin polymers as anticancer and antiviral agents. J Organomet Chem 751:67–82

    Article  Google Scholar 

  5. Arjmand F, Parveen S, Tabassum S, Pettinari C (2014) Organo-tin antitumor compounds: their present status in drug development and future perspectives. Inorg Chim Acta 423:26–37

    Article  Google Scholar 

  6. Katsoulakou E, Tiliakos M, Papaefstathiou G, Terzis A, Raptopoulou C, Geromichalos G, Papazisis K, Papi R, Pantazaki A, Kyriakidis D, Cordopatis P, Manessi-Zoupa E (2008) Diorganotin(IV) complexes of dipeptides containing the & #x03B1;-aminoisobutyryl residue (Aib): preparation, structural characterization, antibacterial and antiproliferative activities of [(n-Bu)2Sn(H-1L)] (LH = H-Aib-L-Leu-OH, H-Aib-L-Ala-OH). J Inorg Biochem 102:1397–1405

    Article  Google Scholar 

  7. Nath M, Singh H, Kumar P, Kumar A, Song X, Eng G (2009) Organotin(IV) tryptophanylglycinates: potential non-steroidal anti-inflammatory agents; crystal structure of dibutyltin (IV) tryptophanylglycinate. Appl Organometal Chem 23:347–358

    Article  Google Scholar 

  8. Girasolo MA, Rubino S, Portanova P, Calvaruso G, Ruisi G, Stocco G (2010) New organotin(IV) complexes with l-arginine, Nα-t-Boc-l-arginine and l-alanyl-l-arginine: synthesis, structural investigations and cytotoxic activity. J Organomet Chem 695:609–618

    Article  Google Scholar 

  9. Girichev GV, Giricheva NI, Koifman OI, Minenkov YV, Pogonin AE, Semeikin AS, Shlykov SA (2012) Molecular structure and bonding in octamethylporphyrin tin(II), SnN4C28H28. Dalton Trans 41:7550–7558

    Article  Google Scholar 

  10. Thomas R, Nelson JP, Pardasani RT, Pardasani P, Mukherjee T (2013) Novel tin complexes containing an oximato ligand: synthesis, characterization, and computational investigation. Helv Chim Acta 96:1740–1749

    Article  Google Scholar 

  11. Latrous L, Tortajada J, Haldys V, Léon E, Correia C, Salpin JY (2013) Gas-phase interactions of organotin compounds with glycine. J Mass Spectrom 48:795–806

    Article  ADS  Google Scholar 

  12. Matczak P (2015) Theoretical investigation of the N → Sn coordination in (Me3SnCN)2. Struct Chem 26:301–318

    Article  Google Scholar 

  13. Pokharia S (2015) Theoretical insights on organotin(IV)-protein interaction: density functional theory (DFT) studies on di-n-butyltin(IV) derivative of glycylvaline. Asian J Res Chem 8:7–12

    Article  Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian09, revision B.01. Gaussian, Inc., Wallingford

    Google Scholar 

  15. Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  ADS  Google Scholar 

  16. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  ADS  Google Scholar 

  17. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations-potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310

    Article  ADS  Google Scholar 

  18. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    Article  Google Scholar 

  19. Dennington RD II, Keith TA, Millam JM (2009) Gauss view. Gaussian Inc., Wallingford

    Google Scholar 

  20. Huber F, Haupt HJ, Preut H, Barbieri R, LoGuidice MT (1977) Preparation, crystal and molecular structure of diphenyltin glycylglycinate (C6H5)2SnC4H6N2O3. Z Anorg Allg Chem 432:51–57

    Article  Google Scholar 

  21. Mundus-Glowacki B, Huber F, Preut H, Ruisi G, Barbieri R (1992) Synthesis and spectroscopic characterization of dimethyl-, di-n-butyl, di-t-butyl- and diphenyl-tin(IV) derivatives of dipeptides: crystal and molecular structure of di-n-butyltin(IV)glycylvalinate. Appl Organomet Chem 6:83–94

    Article  Google Scholar 

  22. Nath M, Singh H, Eng G, Song X (2008) New di- and triorganotin(IV) derivatives of tyrosinylphenylalanine as models for metal-protein interactions: synthesis and structural characterization. Crystal structure of Me2Sn(Tyr-Phe).MeOH. J Organomet Chem 693:2541–2550

    Article  Google Scholar 

  23. Berger G (2013) Using conceptual density functional theory to rationalize regioselectivity: a case study on the nucleophilic ring-opening of activated aziridines. Comput Theor Chem 1010:11–18

    Article  Google Scholar 

  24. Politzer P, Laurence PR, Jayasuriya K (1985) Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Env Health Perspec 61:191–202

    Article  Google Scholar 

  25. Roy RK, Saha S (2010) Studies of regioselectivity of large molecular systems using DFT based reactivity descriptors. Annu Rep Prog Chem Sect C 106:118–162

    Article  Google Scholar 

  26. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  Google Scholar 

  27. Yang W, Parr RG (1985) Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci USA 82:6723–6726

    Article  ADS  Google Scholar 

  28. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091

    Article  Google Scholar 

  29. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  Google Scholar 

  30. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050

    Article  Google Scholar 

  31. Saha S, Bhattacharjee R, Roy RK (2013) Hardness potential derivatives and their relation to Fukui indices. J Comput Chem 34:662–672

    Article  Google Scholar 

  32. Roy RK, Krishnamurti S, Geerlings P, Pal S (1998) Local softness and hardness based reactivity descriptors for predicting intra- and intermolecular reactivity sequences: carbonyl compounds. J Phys Chem A 102:3746–3755

    Article  Google Scholar 

  33. Morell C, Grand A, Toro-Labbé A (2005) New dual descriptor for chemical reactivity. J Phys Chem A 109:205–212

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Banaras Hindu University, Varanasi, India, for providing basic infrastructural and computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Pokharia.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokharia, S., Joshi, R., Pokharia, M. et al. Electronic Structure Explanation for the Structure and Reactivity of di-n-Butyltin(IV) Derivative of Glycylphenylalanine. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 89, 223–234 (2019). https://doi.org/10.1007/s40010-018-0582-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-018-0582-7

Keywords

Navigation