Unconventional Physical Methods for Synthesis of Metal and Non-metal Nanoparticles: A Review

  • Purushottam Kumar Singh
  • Pankaj Kumar
  • Alok Kumar Das
Review Article


Nanoparticles of different metals and non-metals have been drawing keen attention of the scientists due to extensive applications of nanoparticles in areas of chemistry, physics, material science, electronics and biotechnology. Synthesis of nanoparticles with different metals and non-metals through the unconventional machining methods has become a promising area of research. However, till now this study has been largely confined to laboratories. The present paper focuses on the development of different methods for the synthesis of nanoparticles as reported by the researchers from across the world.


Nanoparticle Synthesis Unconventional machining Biotechnology Spark plasma 


  1. 1.
    Horikoshi S, Serpone N (eds) (2013) Microwaves in nanoparticle synthesis: fundamentals and applications. Wiley, HobokenGoogle Scholar
  2. 2.
    Hett A (2004) Nanotechnology: small matter, many unknowns. Swiss Reinsurance Company, ZurichGoogle Scholar
  3. 3.
    Joachim C (2004) Nanotechnology—an introduction to nanostructuring techniques. By Michael Köhler and Wolfgang Fritzsche.
  4. 4.
    Blakemore RP, Frankel RB, Kalmijn AJ (1980) South-seeking magnetotactic bacteria in the Southern Hemisphere. Nature 286:384–385Google Scholar
  5. 5.
    Theil EC (1987) Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem 56:289–315CrossRefGoogle Scholar
  6. 6.
    Lue JT, Huang WC, Ma SK (1995) Spin-flip scattering for the electrical property of metallic-nanoparticle thin films. Phys Rev B 51:14570ADSCrossRefGoogle Scholar
  7. 7.
    Huang WC, Lue JT (1999) Spin-glass properties of metallic nanoparticles conducted by quantum size effects. Phys Rev B 59:69ADSCrossRefGoogle Scholar
  8. 8.
    Liu T, Leng Y, Li X (2003) Preparation and characteristics of Fe3 Al nanoparticles by hydrogen plasma–metal reaction. Solid State Commun 125:391–394ADSCrossRefGoogle Scholar
  9. 9.
    Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci 110:49–74CrossRefGoogle Scholar
  10. 10.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRefGoogle Scholar
  11. 11.
    Pangi Z, Beletsi A, Evangelatos K (2003) PEGylated nanoparticles for biological and pharmaceutical application. Adv Drug Deliv Rev 24:403–419Google Scholar
  12. 12.
    Lane R, Craig B, Babcock W (2002) The coming revolution: science and technology of nanoscale structures. AMPTIAC Newsl 6:5Google Scholar
  13. 13.
    Klabunde KJ (ed) (2001) Nanoscale materials in chemistry, vol 1035. Wiley-Interscience, New YorkGoogle Scholar
  14. 14.
    Tikkanen J, Gross KA, Berndt CC, Pitkänen V, Keskinen J, Raghu S, Rajala M, Karthikeyan J (1997) Characteristics of the liquid flame spray process. Surf Coat Technol 90:210–216CrossRefGoogle Scholar
  15. 15.
    Sahm T, Mädler L, Gurlo A, Barsan N, Pratsinis SE, Weimar U (2004) Flame spray synthesis of tin dioxide nanoparticles for gas sensing. Sens Actuators B Chem 98:148–153CrossRefGoogle Scholar
  16. 16.
    Mäkelä JM, Keskinen H, Forsblom T, Keskinen J (2004) Generation of metal and metal oxide nanoparticles by liquid flame spray process. J Mater Sci 39:2783–2788ADSCrossRefGoogle Scholar
  17. 17.
    Okuyama K, Wuled Lenggoro I (2003) Preparation of nanoparticles via spray route. Chem Eng Sci 58:537–547CrossRefGoogle Scholar
  18. 18.
    Gurav A, Kodas T, Pluym T, Xiong Y (1993) Aerosol processing of materials. Aerosol Sci Technol 19:411–452ADSCrossRefGoogle Scholar
  19. 19.
    Okuyama K (1991) Preparation of micro-controlled particles using aerosol process. J Aerosol Sci 22:S7–S10ADSCrossRefGoogle Scholar
  20. 20.
    Widiyastuti W, Balgis R, Iskandar F, Okuyama K (2010) Nanoparticle formation in spray pyrolysis under low-pressure conditions. Chem Eng Sci 65:1846–1854CrossRefGoogle Scholar
  21. 21.
    Kang YC, Park SB (1997) Effect of preparation conditions on the formation of primary ZnO particles in filter expansion aerosol generator. J Mater Sci Lett 16:131–133CrossRefGoogle Scholar
  22. 22.
    Kang YC, Park SB (1997) Preparation of perovskite-type La 0.85 Sr 0.15 MnO3 particles by spray pyrolysis using a filter expansion aerosol generator. J Mater Sci Lett 16:1201–1204Google Scholar
  23. 23.
    Lenggoro IW, Itoh Y, Iida N, Okuyama K (2003) Control of size and morphology in NiO particles prepared by a low-pressure spray pyrolysis. Mater Res Bull 38:1819–1827CrossRefGoogle Scholar
  24. 24.
    Ogi T, Iskandar F, Itoh Y, Okuyama K (2006) Characterization of dip-coated ITO films derived from nanoparticles synthesized by␣ low-pressure spray pyrolysis. J Nanopart Res 8:343–350CrossRefGoogle Scholar
  25. 25.
    Ju SH, Kang YC (2008) Nano-sized manganese oxide particles prepared by low-pressure spray pyrolysis using FEAG process. Mater Res Bull 43:590–600CrossRefGoogle Scholar
  26. 26.
    Ogi T, Hidayat D, Iskandar F, Purwanto A, Okuyama K (2009) Direct synthesis of highly crystalline transparent conducting oxide nanoparticles by low pressure spray pyrolysis. Adv Powder Technol 20:203–209CrossRefGoogle Scholar
  27. 27.
    Meesters GMH, Vercoulen PHW, Marijnissen JCM, Scarlett B (1992) Generation of micron-sized droplets from the Taylor cone. J Aerosol Sci 23:37–49ADSCrossRefGoogle Scholar
  28. 28.
    Lung JK, Huang JC, Tien DC, Liao CY, Tseng KH, Tsung TT, Kao WS, Tsai TH, Jwo CS, Lin HM, Stobinski L (2007) Preparation of gold nanoparticles by arc discharge in water. J Alloy Compd 434:655–658CrossRefGoogle Scholar
  29. 29.
    Tien DC, Tseng KH, Liao CY, Huang JC, Tsung TT (2008) Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method. J Alloy Compd 463:408–411CrossRefGoogle Scholar
  30. 30.
    Lo CH, Tsung TT, Chen LC, Su CH, Lin HM (2005) Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SANSS). J Nanopart Res 7:313–320CrossRefGoogle Scholar
  31. 31.
    Tseng KH, Liao CY, Huang JC, Tien DC, Tsung TT (2008) Characterization of gold nanoparticles in organic or inorganic medium (ethanol/water) fabricated by spark discharge method. Mater Lett 62:3341–3344CrossRefGoogle Scholar
  32. 32.
    Hamdan A, Noël C, Ghanbaja J, Belmonte T (2014) Comparison of aluminium nanostructures created by discharges in various dielectric liquids. Plasma Chem Plasma Process 34:1101–1114CrossRefGoogle Scholar
  33. 33.
    Khezri SH, Yazdani A, Khordad R (2014) Effect of characteristics of media on cobalt and iron nanoparticles prepared by arc discharge method. J Ind Eng Chem 20:521–527CrossRefGoogle Scholar
  34. 34.
    Lo CH, Tsung TT, Lin HM (2007) Preparation of silver nanofluid by the submerged arc nanoparticle synthesis system (SANSS). J Alloy Compd 434:659–662CrossRefGoogle Scholar
  35. 35.
    Etman MA (2013) Parametric study of silver nanoparticles production using submerged arc-discharge technique in de-ionized water. Nanosci Nanotechnol 3:56–61Google Scholar
  36. 36.
    Miranzadeh M, Kassaee MZ (2014) Solvent effects on arc discharge fabrication of durable silver nanopowder and its application as a recyclable catalyst for elimination of toxic p-nitrophenol. Chem Eng J 257:105–111CrossRefGoogle Scholar
  37. 37.
    Kheradmand E, Delavari H, Poursalehi R (2015) The effect of dissolved oxygen in arc medium on crystal structure and optical properties of iron based nanoparticles prepared via DC arc discharge in water. Procedia Mater Sci 11:695–699CrossRefGoogle Scholar
  38. 38.
    Ashkarran AA, Mohammadi B (2015) ZnO nanoparticles decorated on graphene sheets through liquid arc discharge approach with enhanced photocatalytic performance under visible-light. Appl Surf Sci 342:112–119ADSCrossRefGoogle Scholar
  39. 39.
    Schur DV, Dubovoy AG, Zaginaichenko SY, Adejev VM, Kotko AV, Bogolepov VA, Zolotarenko AD (2007) Production of carbon nanostructures by arc synthesis in the liquid phase. Carbon 45:1322–1329CrossRefGoogle Scholar
  40. 40.
    Schwyn S, Garwin E, Schmidt-Ott A (1988) Aerosol generation by spark discharge. J Aerosol Sci 19:639–642ADSCrossRefGoogle Scholar
  41. 41.
    Vons VA, Leegwater H, Legerstee WJ, Eijt SWH, Schmidt-Ott A (2010) Hydrogen storage properties of spark generated palladium nanoparticles. Int J Hydrog Energy 35:5479–5489CrossRefGoogle Scholar
  42. 42.
    Vons VA (2010) Spark discharge generated nanoparticles for hydrogen storage applications. PhD thesis, Delft University of Technology, Delft, The NetherlandsGoogle Scholar
  43. 43.
    Messing ME, Dick KA, Wallenberg LR, Deppert K (2009) Generation of size-selected gold nanoparticles by spark discharge—for growth of epitaxial nanowires. Gold Bull 42:20–26CrossRefGoogle Scholar
  44. 44.
    Weber AP, Seipenbusch M, Kasper G (2003) Size effects in the catalytic activity of unsupported metallic nanoparticles. J Nanopart Res 5:293–298CrossRefGoogle Scholar
  45. 45.
    Weber AP, Davoodi P, Seipenbusch M, Kasper G (2006) Catalytic behavior of nickel nanoparticles: gasborne vs. supported state. J Nanopart Res 8:445–453CrossRefGoogle Scholar
  46. 46.
    Wei Z, Xia T, Bai L, Wang J, Wu Z, Yan P (2006) Efficient preparation for Ni nanopowders by anodic arc plasma. Mater Lett 60:766–770CrossRefGoogle Scholar
  47. 47.
    Stein M, Kiesler D, Kruis FE (2013) Effect of carrier gas composition on transferred arc metal nanoparticle synthesis. J Nanopart Res 15:1–14CrossRefGoogle Scholar
  48. 48.
    Hontañón E, Palomares JM, Stein M, Guo X, Engeln R, Nirschl H, Kruis FE (2013) The transition from spark to arc discharge and its implications with respect to nanoparticle production. J Nanopart Res 15:1–19CrossRefGoogle Scholar
  49. 49.
    Cole JJ, Lin EC, Barry CR, Jacobs HO (2009) Continuous nanoparticle generation and assembly by atmospheric pressure arc discharge. Appl Phys Lett 95:113101ADSCrossRefGoogle Scholar
  50. 50.
    Haidar J (2009) Synthesis of Al nanopowders in an anodic arc. Plasma Chem Plasma Process 29:307–319CrossRefGoogle Scholar
  51. 51.
    Shin MG, Park DW (2010) Synthesis of copper nanopowders by transferred arc and non-transferred arc plasma systems. J Optoelectron Adv Mater 12:528–534Google Scholar
  52. 52.
    Tanaka M, Watanabe T (2008) Vaporization mechanism from Sn–Ag mixture by Ar–H2 arc for nanoparticle preparation. Thin Solid Films 516:6645–6649ADSCrossRefGoogle Scholar
  53. 53.
    Lee JG, Li P, Choi CJ, Dong XL (2010) Synthesis of Mn–Al alloy nanoparticles by plasma arc discharge. Thin Solid Films 519:81–85ADSCrossRefGoogle Scholar
  54. 54.
    Wei ZQ, Liu LG, Yang H, Zhang CR, Feng WJ (2011) Characterization of carbon encapsulated Fe-nanoparticles prepared by confined arc plasma. Trans Nonferrous Met Soc China 21:2026–2030CrossRefGoogle Scholar
  55. 55.
    Kuffel J, Kuffel E, Zaengl WS (2000) High voltage engineering fundamentals. Newnes, OxfordGoogle Scholar
  56. 56.
    Va’vra J, Maly JA, Va’vra PM (1998) Soft X-ray production in spark discharges in hydrogen, nitrogen, air, argon and xenon gases. Nucl Instrum Methods Phys Res, Sect A 418:405–419ADSCrossRefGoogle Scholar
  57. 57.
    Tabrizi NS, Ullmann M, Vons VA, Lafont U, Schmidt-Ott A (2009) Generation of nanoparticles by spark discharge. J Nanopart Res 11:315–332CrossRefGoogle Scholar
  58. 58.
    Hinds WC (1982) Aerosol technology: properties, behavior, and measurement of airborne particles, vol 442. Wiley-Interscience, New York, p 1Google Scholar
  59. 59.
    Helsper C, Mölter W, Löffler F, Wadenpohl C, Kaufmann S, Wenninger G (1993) Investigations of a new aerosol generator for the production of carbon aggregate particles. Atmos Environ 27:1271–1275ADSCrossRefGoogle Scholar
  60. 60.
    Weber AP, Baltensperger U, Gäggeler HW, Schmidt-Ott A (1996) In situ characterization and structure modification of agglomerated aerosol particles. J Aerosol Sci 27:915–929ADSCrossRefGoogle Scholar
  61. 61.
    Wittmaack K (2007) Deriving the mean primary-particle diameter and related quantities from the size distribution and the gravimetric mass of spark generated nanoparticles. J Nanopart Res 9:191–200CrossRefGoogle Scholar
  62. 62.
    Byeon JH, Park JH, Hwang J (2008) Spark generation of monometallic and bimetallic aerosol nanoparticles. J Aerosol Sci 39:888–896ADSCrossRefGoogle Scholar
  63. 63.
    Tabrizi NS, Xu Q, van der Pers NM, Schmidt-Ott A (2010) Generation of mixed metallic nanoparticles from immiscible metals by spark discharge. J Nanopart Res 12:247–259CrossRefGoogle Scholar
  64. 64.
    Vons VA, de Smet LC, Munao D, Evirgen A, Kelder EM, Schmidt-Ott A (2011) Silicon nanoparticles produced by spark discharge. J Nanopart Res 13:4867–4879CrossRefGoogle Scholar
  65. 65.
    Borra JP, Jidenko N, Hou J, Weber A (2015) Vaporization of bulk metals into single-digit nanoparticles by non-thermal plasma filaments in atmospheric pressure dielectric barrier discharges. J Aerosol Sci 79:109–125ADSCrossRefGoogle Scholar
  66. 66.
    Ruan C, Leng J, Lian Y (2016) Electrochemical performance of carbon onions fabricated by electric arc-discharge method. Electroanalysis 28:145–150CrossRefGoogle Scholar
  67. 67.
    Szymczak W, Menzel N, Kreyling WG, Wittmaack K (2006) TOF-SIMS characterisation of spark-generated nanoparticles made from pairs of Ir–Ir and Ir–C electrodes. Int J Mass Spectrom 254:70–84CrossRefGoogle Scholar
  68. 68.
    Kreyling WG, Biswas P, Messing ME, Gibson N, Geiser M, Wenk A, Sahu M, Deppert K, Cydzic I, Wigge C, Schmid O, Semmler-Behnke M (2011) Generation and characterization of stable, highly concentrated titanium dioxide nanoparticle aerosols for rodent inhalation studies. J Nanopart Res 13:511–524CrossRefGoogle Scholar
  69. 69.
    Itina TE, Voloshko A (2013) Nanoparticle formation by laser ablation in air and by spark discharges at atmospheric pressure. Appl Phys B 113:473–478ADSCrossRefGoogle Scholar
  70. 70.
    Tseng KH, Chen YC, Shyue JJ (2011) Continuous synthesis of colloidal silver nanoparticles by electrochemical discharge in aqueous solutions. J Nanopart Res 13:1865–1872CrossRefGoogle Scholar
  71. 71.
    Zou X, Dong S (2006) Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution. J Phys Chem B 110:21545–21550CrossRefGoogle Scholar
  72. 72.
    Ozcan-Yilsay T, Lee WJ, Horne D, Lucey JA (2007) Effect of trisodium citrate on rheological and physical properties and microstructure of yogurt. J Dairy Sci 90:1644–1652CrossRefGoogle Scholar
  73. 73.
    Kawamura H, Moritani K (1998) Discharge electrolysis in molten chloride: formation of fine silver particles. Plasmas Ions 1:29–36CrossRefGoogle Scholar
  74. 74.
    Oishi T, Kawamura H, Ito Y (2002) Formation and size control of titanium particles by cathode discharge electrolysis of molten chloride. J Appl Electrochem 32:819–824CrossRefGoogle Scholar
  75. 75.
    Richmonds C, Sankaran RM (2008) Plasma-liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Appl Phys Lett 93:131501ADSCrossRefGoogle Scholar
  76. 76.
    Baba K, Kaneko T, Hatakeyama R (2009) Efficient synthesis of gold nanoparticles using ion irradiation in gas–liquid interfacial plasmas. Appl Phys Express 2:035006ADSCrossRefGoogle Scholar
  77. 77.
    Lal A, Bleuler H, Wüthrich R (2008) Fabrication of metallic nanoparticles by electrochemical discharges. Electrochem Commun 10:488–491CrossRefGoogle Scholar
  78. 78.
    Allagui A, Wüthrich R (2011) The electrochemical discharges for the synthesis of nickel oxide nanoparticles: characterization and mechanism. Electrochim Acta 58:12–18CrossRefGoogle Scholar
  79. 79.
    Movtchan IA, Dreyfus RW, Marine W, Sentis M, Autric M, Le Lay G, Merk N (1995) Luminescence from a Si–SiO2 nanocluster-like structure prepared by laser ablation. Thin Solid Films 255:286–289ADSCrossRefGoogle Scholar
  80. 80.
    Gondal MA, Saleh TA, Drmosh QA (2012) Synthesis of nickel oxide nanoparticles using pulsed laser ablation in liquids and their optical characterization. Appl Surf Sci 258:6982–6986ADSCrossRefGoogle Scholar
  81. 81.
    Kabashin AV, Meunier M (2003) Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J Appl Phys 94:7941–7943ADSCrossRefGoogle Scholar
  82. 82.
    Fojtik A, Giersig M, Henglein A (1993) Formation of nanometer-size silicon particles in a laser induced plasma in SiH4. Ber Bunsen-Ges Phys Chem 97:1493–1496CrossRefGoogle Scholar
  83. 83.
    Sibbald MS, Chumanov G, Cotton TM (1996) Reduction of cytochrome by halide-modified, laser-ablated silver colloids. J Phys Chem 100:4672–4678CrossRefGoogle Scholar
  84. 84.
    Mafuné F, Kohno JY, Takeda Y, Kondow T, Sawabe H (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117CrossRefGoogle Scholar
  85. 85.
    Chen YH, Yeh CS (2002) Laser ablation method: use of surfactants to form the dispersed Ag nanoparticles. Colloids Surf A 197:133–139CrossRefGoogle Scholar
  86. 86.
    Mafuné F, Kohno JY, Takeda Y, Kondow T, Sawabe H (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105:5114–5120CrossRefGoogle Scholar
  87. 87.
    Barcikowski S, Hahn A, Kabashin AV, Chichkov BN (2007) Properties of nanoparticles generated during femtosecond laser machining in air and water. Appl Phys A 87:47–55ADSCrossRefGoogle Scholar
  88. 88.
    Nath A, Laha SS, Khare A (2011) Effect of focusing conditions on synthesis of titanium oxide nanoparticles via laser ablation in titanium–water interface. Appl Surf Sci 257:3118–3122ADSCrossRefGoogle Scholar
  89. 89.
    Tsuji T, Iryo K, Nishimura Y, Tsuji M (2001) Preparation of metal colloids by a laser ablation technique in solution: influence of laser wavelength on the ablation efficiency (II). J Photochem Photobiol A Chem 145:201–207CrossRefGoogle Scholar
  90. 90.
    Kazakevich PV, Simakin AV, Voronov VV, Shafeev GA (2006) Laser induced synthesis of nanoparticles in liquids. Appl Surf Sci 252:4373–4380ADSCrossRefGoogle Scholar
  91. 91.
    Bubb DM, Malley SM, Schoeffling J, Jimenez R, Zinderman B, Yi S (2013) Size control of gold nanoparticles produced by laser ablation of thin films in an aqueous environment. Chem Phys Lett 565:65–68ADSCrossRefGoogle Scholar
  92. 92.
    Patel DN, Singh RP, Thareja RK (2014) Craters and nanostructures with laser ablation of metal/metal alloy in air and liquid. Appl Surf Sci 288:550–557ADSCrossRefGoogle Scholar
  93. 93.
    Azmir MA, Ahsan AK (2009) A study of abrasive water jet machining process on glass/epoxy composite laminate. J Mater Process Technol 209:6168–6173CrossRefGoogle Scholar
  94. 94.
    Vundavilli PR, Parappagoudar MB, Kodali SP, Benguluri S (2012) Fuzzy logic-based expert system for prediction of depth of cut in abrasive water jet machining process. Knowl Based Syst 27:456–464CrossRefGoogle Scholar
  95. 95.
    Hashish M (1989) Pressure effects in abrasive-waterjet (AWJ) machining. J Eng Mater Technol 111:221–228CrossRefGoogle Scholar
  96. 96.
    Orbanic H, Jurisevic B, Kramar D, Grah M, Junkar M (2006) Miniaturization of injection abrasive water jet machining process. Proc Inst Mech Eng Part C J Mech Eng Sci 220:1697–1705CrossRefGoogle Scholar
  97. 97.
    Momber AW, Kovacevic R (2012) Principles of abrasive water jet machining. Springer, BerlinMATHGoogle Scholar
  98. 98.
    Axinte DA, Srinivasu DS, Kong MC, Butler-Smith PW (2009) Abrasive waterjet cutting of polycrystalline diamond: a preliminary investigation. Int J Mach Tool Manuf 49:797–803CrossRefGoogle Scholar
  99. 99.
    Palleda M (2007) A study of taper angles and material removal rates of drilled holes in the abrasive water jet machining process. J Mater Process Technol 189:292–295CrossRefGoogle Scholar
  100. 100.
    Momber AW, Kovacevic R (2000) Particle-size distribution influence in high-speed erosion of aluminium. Part Sci Technol 18:199–212CrossRefGoogle Scholar
  101. 101.
    Ling TY, Pui DY (2013) Characterization of nanoparticles from abrasive waterjet machining and electrical discharge machining processes. Environ Sci Technol 47:12721–12727ADSCrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2018

Authors and Affiliations

  • Purushottam Kumar Singh
    • 1
  • Pankaj Kumar
    • 1
  • Alok Kumar Das
    • 1
  1. 1.Department of Mechanical EngineeringIndian School of Mines, DhanbadDhanbadIndia

Personalised recommendations