Advertisement

Estimating Agricultural Crop Types and Fallow Lands Using Multi Temporal Sentinel-2A Imageries

Research Article
  • 141 Downloads

Abstract

Meeting the food and nutritional demands of ever growing human population will cause immense pressure on agricultural lands and natural resource bases across the world. This challenge can be met only by proper land and water management, which consists of crucial components like understanding cropping systems and crop fallow dynamics for sustainable intensification. In this work, a methodology was developed for crop and crop fallow land estimation using multi-temporal, high spatial resolution Sentinel-2A data in a test site of Odisha state, in India, comprising of two districts i.e., Bhadrak and Jajpur. Customized codes were written to find temporal variation pattern of NDVI values for each pixel in the study area. Observing the variation of NDVI over time, we have attempted to estimate crop life cycle duration and their type with rigorous field inputs. The cropland and fallow land intensification maps showed 10-different cropping pattern with classification accuracy of 83.33%, and kappa coefficient of 0.81. We observed that (1) kharif is the major crop in the study area, while rabi mainly grows in areas where external fresh water sources are available (2) a large portion of the area remains fallow for most part of the year as mapped from Sentinel 2A data. There is scope to utilise the fallow lands for multi-cropping with appropriate land and water management, through the government policy prescriptions. With Sentinel-2B sensor now on board, the temporal resolution of satellite-2 (2A and 2B combined) could improve leading to improved classification and upgradation of the algorithm followed here.

Keywords

NDVI Remote sensing Seasonal crop mapping Fallow intensification 

References

  1. 1.
    FAO (2015) FAOSTAT. http://faostat.fao.org/. Accessed 2 June 2017
  2. 2.
    Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cycles 22:GB1003.  https://doi.org/10.1029/2007GB002952 ADSCrossRefGoogle Scholar
  3. 3.
    USDA (2010) United States Department of Agriculture. Foreign Agricultural Service. www.fas.usda.gov/psdonline/. Accessed 8 June 2017
  4. 4.
    Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA working paper No. 12-03. Rome, FAOGoogle Scholar
  5. 5.
    Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818ADSCrossRefGoogle Scholar
  6. 6.
    Rounsevell M, Ewert F, Reginster I, Leemans R, Carter T (2005) Future scenarios of European agricultural land use: II. Projecting changes in cropland and grassland. Agric Ecosyst Environ 107:117–135CrossRefGoogle Scholar
  7. 7.
    Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240ADSCrossRefGoogle Scholar
  8. 8.
    Heller E, Rhemtulla JM, Lele S, Kalacska M, Badiger S, Sengupta R, Ramankutty N (2012) Mapping crop types, irrigated areas, and cropping intensities in heterogeneous landscapes of southern india using multi-temporal medium-resolution imagery: implications for assessing water use in agriculture. Photogramm Eng Remote Sens 78:815–882CrossRefGoogle Scholar
  9. 9.
    Zhang G, Xiao X, Biradar CM et al (2017) Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015. Sci Total Environ 579:82–92.  https://doi.org/10.1016/j.scitotenv.2016.10.223 ADSCrossRefGoogle Scholar
  10. 10.
    Gumma MK, Thenkabail PS, Teluguntla P, Rao MN, Ia Mohammed, Whitbread AM (2016) Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250 m time-series data. Int J Digit Earth 8947(May):1–23.  https://doi.org/10.1080/17538947.2016.1168489 Google Scholar
  11. 11.
    Kontgis C, Schneider A, Ozdogan M (2015) Mapping rice paddy extent and intensification in the vietnamese mekong river delta with dense time stacks of landsat data. Remote Sens Environ 169:255–269ADSCrossRefGoogle Scholar
  12. 12.
    Subbarao G, Rao JK, Kumar C, Johansen U, Irshad A, Rao LK, Venkataratnam K, Hebbar K, Sai M, Harries D (2001) Spatial distribution and quantification of rice-fallows in South Asia: potential for legumes. ICRISAT, HyderabadGoogle Scholar
  13. 13.
    Bashlyk D, Shelestov A, Lavreniuk M (2016) Use of Sentinel-2 data for agricultural land use monitoring within World Bank project. GEOGLAM/JECAM, Sen2-Agri SIGMA Jt. WorkGoogle Scholar
  14. 14.
    Drusch M, Bello UD, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P et al (2012) Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens Environ 120:25–36.  https://doi.org/10.1016/j.rse.2011.11.026 ADSCrossRefGoogle Scholar
  15. 15.
    Inglada J, Arias M, Tardy B, Hagolle O, Valero S, Morin D, Dedieu G, Sepulcre G, Bontemps S, Defourny P et al (2015) Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery. Remote Sens 7:12356–12379ADSCrossRefGoogle Scholar
  16. 16.
    Inglada J, Vincent A, Arias M, Marais-Sicre C (2016) Improved early crop type identification by joint use of high temporal resolution SAR and optical image time series. Remote Sens.  https://doi.org/10.3390/rs8050362 Google Scholar
  17. 17.
    Lv T, Tao Z, Zhou X, Sun X, Yang A, Yang B (2017) A phenology-based classification for crop in Great Mekong Subregion based on MODIS data. In: IOP conference series: earth and environmental science, vol. 57, p. 12003.  https://doi.org/10.1088/1755-1315/57/1/012003
  18. 18.
    Yan E, Wang G, Lin H, Xia C, Sun H (2015) Phenology-based classification of vegetation cover types in Northeast China using MODIS NDVI and EVI time series. Int J Remote Sens 36(2):489–512.  https://doi.org/10.1080/01431161.2014.999167 CrossRefGoogle Scholar
  19. 19.
    Son NT, Chen CF, Chen CR, Duc HN, Chang LY (2013) A phenology-based classification of time-series MODIS data for rice crop monitoring in Mekong Delta, Vietnam. Remote Sensing 6(1):135–156.  https://doi.org/10.3390/rs6010135 ADSCrossRefGoogle Scholar
  20. 20.
    Knauer K, Gessner U, Fensholt R et al (2017) Monitoring agricultural expansion in Burkina Faso over 14 years with 30 m resolution time series: the role of population growth and implications for the environment. Remote Sens.  https://doi.org/10.3390/rs9020132 Google Scholar
  21. 21.
    Stefanski J, Kuemmerle T, Chaskovskyy O et al (2014) Mapping land management regimes in western Ukraine using optical and SAR data. Remote Sens 6:5279–5305.  https://doi.org/10.3390/rs6065279 ADSCrossRefGoogle Scholar
  22. 22.
    Viña A, Gitelson AA, Nguy-Robertson AL, Peng Y (2011) Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens Environ 115(12):3468–3478.  https://doi.org/10.1016/j.rse.2011.08.010 ADSCrossRefGoogle Scholar
  23. 23.
    O’Connor B, Dwyer E, Cawkwell F, Eklundh L (2012) Spatio-temporal patterns in vegetation start of season across the island of Ireland using the MERIS Global Vegetation Index. ISPRS J Photogramm Remote Sens 68:79–94ADSCrossRefGoogle Scholar
  24. 24.
    ESA (2012) Sentinel-2 ESA’s optical high-resolution mission for GMES operational services.  https://doi.org/10.1016/j.rse.2011.11.026
  25. 25.
    Ground Water Information Booklet of Bhadrak District (2013) Central Ground Water Board, Ministry of Water ResourcesGoogle Scholar
  26. 26.
    Ground Water Information Booklet of Jajpur District (2013) Central Ground Water Board, Ministry of Water ResourcesGoogle Scholar
  27. 27.
  28. 28.
  29. 29.
  30. 30.
    Larson R, Farber B (2006) Elementary statistics. Pearson Custom Pub, LondonGoogle Scholar
  31. 31.
    R Development Core Team (2005) R: A language and environment for statistical computing. Vienna, Austria: R foundation for statistical computing ISBN 3-900051-07-0. http://www.R-project.org
  32. 32.
    Li Q, Wang C, Zhang B, Lu L (2015) Object-based crop classification with landsat-MODIS enhanced time-series data. Remote Sens 7(12):16091–16107.  https://doi.org/10.3390/rs71215820 ADSCrossRefGoogle Scholar
  33. 33.
    Singha M, Wu B, Zhang M (2016) An object-based paddy rice classification using multi-spectral data and crop phenology in Assam, Northeast India. Remote Sens.  https://doi.org/10.3390/rs8060479 Google Scholar
  34. 34.
    Galvão LS, Vitorello Í, Almeida Filho R (1999) Effects of band positioning and bandwidth on NDVI measurements of Tropical Savannas. Remote Sens Environ 67:181–193.  https://doi.org/10.1016/S0034-4257(98)00085-6 ADSCrossRefGoogle Scholar
  35. 35.
    Huete AR, Justice C, van Leeuwen W (1996) MODIS vegetation index (MOD 13), EOS MODIS Algorithm—Theoretical Basis Document, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USAGoogle Scholar
  36. 36.
    Knight EJ, Kvaran G (2014) Landsat-8 operational land imager design, characterization and performance. Remote Sens 6:10286–10305.  https://doi.org/10.3390/rs61110286 ADSCrossRefGoogle Scholar
  37. 37.
    Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS. In: Third ERTS symposium, Washington, DC (NASA), pp. 309–317Google Scholar
  38. 38.
    McFeeters SK (1996) The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens 17(7):1425–1432CrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2017

Authors and Affiliations

  • S. M. Ghosh
    • 1
  • S. Saraf
    • 2
  • M. D. Behera
    • 1
  • C. Biradar
    • 3
  1. 1.Centre for Oceans, Rivers, Atmosphere and Land Sciences (CORAL)Indian Institute of Technology KharagpurKharagpurIndia
  2. 2.School of Water ResourcesIndian Institute of Technology KharagpurKharagpurIndia
  3. 3.Geoinformatics UnitInternational Center for Agricultural Research in the Dry Areas JordanAmmanJordan

Personalised recommendations