Skip to main content
Log in

Theoretical Design of Benzoselenadiazole Based Organic Donor Molecules for Solar Cell Applications

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

A series of organic donor molecules of the donor–acceptor–donor (D1-π–A–π-D2) type containing triphenylamine (TPA) and thiophene (Th) as donor units and 4,7-di(thiophen-2-yl)benzo[c][1,2,5] thiadiazole (DBT), 4,7-di(thiophen-2-yl)benzo[c][1,2,5] oxodiazole (DBO) and 4,7-di(thiophen-2-yl)benzo[c][1,2,5] selenadiazole (DBSe) as acceptor fragments with vinyl moiety as π-bridge and nitro unit (−NO2) as electron withdrawing end cap have been designed for organic solar cell applications. The designed molecules are analyzed using density functional theory (DFT) and time dependent-DFT (TD-DFT) calculations at PBE0/6-31G(d,p) level. The effect of heteroatom substitutions from sulphur in central DBT unit with oxygen in DBO and selenium in DBSe were studied. The geometrical and electronic basis for selecting the number of Thn(n = 1–5) units as donor fragments has been elucidated in detail. The designed donors are screened against [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), bisPCBM, and PC70BM as reference acceptors. The ordering of frontier molecular orbitals (FMOs) of the designed donors and those of the fullerene acceptors has been compared to develop more compatible organic donor molecule to be used in tandem with these acceptors. Results show that a minimum of three thiophene units are necessary for an optimum alignment of FMOs with those of PCBM derivatives. The hetero substitution of S by Se alters the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels and there by reduces the band gap to 1.99 eV with wide absorption range from ultraviolet to infrared regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shirota Y (2000) Organic materials for electronic and optoelectronic devices. J Mater Chem 10:1–25

    Article  Google Scholar 

  2. Yang Y, Zhang J, Zhou Y, Zhao G, He C, Li Y, Andersson M, Inganäs O, Zhang F (2010) Solution-processable organic molecule with triphenylamine core and two benzothiadiazole-thiophene arms for photovoltaic application. J Phys Chem C 114:3701–3706

    Article  Google Scholar 

  3. Beaujuge PM, Fréchet JMJ (2011) Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J Am Chem Soc 133:20009–20029

    Article  Google Scholar 

  4. Roncali J (1997) Synthetic principles for bandgap control in linear π-conjugated systems. Chem Rev 97:173–205

    Article  Google Scholar 

  5. Dong H, Zhu H, Meng Q, Gong X, Hu W (2012) Organic photoresponse materials and devices. Chem Soc Rev 41:1754–1808

    Article  Google Scholar 

  6. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868

    Article  ADS  Google Scholar 

  7. Blom PWM, Mihailetchi VD, Koster LJA, Markov DE (2007) Device physics of polymer: fullerene bulk heterojunction solar cells. Adv Mater 19:1551–1566

    Article  Google Scholar 

  8. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338

    Article  Google Scholar 

  9. Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100 %. Nat Photon 3:297–302

    Article  ADS  Google Scholar 

  10. Walzer K, Maennig B, Pfeiffer M, Leo K (2007) Highly efficient organic devices based on electrically doped transport layers. Chem Rev 107:1233–1271

    Article  Google Scholar 

  11. Lee J-Y, Kim S-H, Song I-S, Moon D-K (2011) Efficient donor–acceptor type polymer semiconductors with well-balanced energy levels and enhanced open circuit voltage properties for use in organic photovoltaics. J Mater Chem 21:16480–16487

    Article  Google Scholar 

  12. Zhang J, Wu G, He C, Deng D, Li Y (2011) Triphenylamine-containing D–A–D molecules with (dicyanomethylene) pyran as an acceptor unit for bulk-heterojunction organic solar cells. J Mater Chem 21:3768–3774

    Article  Google Scholar 

  13. Mikroyannidis JA, Tsagkournos DV, Sharma SS, Vijay YK, Sharma GD (2011) Low band gap conjugated small molecules containing benzobisthiadiazole and thienothiadiazole central units: synthesis and application for bulk heterojunction solar cells. J Mater Chem 21:4679–4688

    Article  Google Scholar 

  14. Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183–185

    Article  ADS  Google Scholar 

  15. Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693–3723

    Article  ADS  Google Scholar 

  16. Sakai J, Taima T, Saito K (2008) Efficient oligothiophene: fullerene bulk heterojunction organic photovoltaic cells. Org Electron 9:582–590

    Article  Google Scholar 

  17. Walker B, Kim C, Nguyen T-Q (2011) Small molecule solution-processed bulk heterojunction solar cells. Chem Mater 23:470–482

    Article  Google Scholar 

  18. Sun Y, Welch GC, Leong WL, Takacs CJ, Bazan GC, Heeger AJ (2012) Solution-processed small-molecule solar cells with 6.7 % efficiency. Nat Mater 11:44–48

    Article  ADS  Google Scholar 

  19. Shirota Y, Kageyama H (2007) Charge carrier transporting molecular materials and their applications in devices. Chem Rev 107:953–1010

    Article  Google Scholar 

  20. Roncali J (2009) Molecular bulk heterojunctions: an emerging approach to organic solar cells. Acc Chem Res 42:1719–1730

    Article  Google Scholar 

  21. Lin Y, Lia Y, Zhan X (2012) Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev 41:4245–4272

    Article  Google Scholar 

  22. Schueppel R, Schmidt K, Uhrich C, Schulze K, Wynands D, Brédas J-L, Brier E, Reinold E, Bu H-B, Bäuerle P, Männig B, Pfeiffer M, Leo K (2008) Optimizing organic photovoltaics using tailored heterojunctions: a photo induced absorption study of oligothiophenes with low band gaps. Phys Rev B 77:085311–085314

    Article  ADS  Google Scholar 

  23. Uhrich C, Schueppel R, Petrich A, Pfeiffer M, Leo K, Brier E, Kilickiran P, Baeuerle P (2007) Organic thin-film photovoltaic cells based on oligothiophenes with reduced bandgap. Adv Funct Mater 17:2991–2999

    Article  Google Scholar 

  24. Cheng Y-J, Yang S-H, Hsu C-S (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109:5868–5923

    Article  Google Scholar 

  25. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10 % energy-conversion efficiency. Adv Mater 18:789–794

    Article  Google Scholar 

  26. Köse ME, Mitchell WJ, Kopidakis N, Chang CH, Shaheen SE, Kim K, Rumbles G (2007) Theoretical studies on conjugated phenyl-cored thiophene dendrimers for photovoltaic applications. J Am Chem Soc 129:14257–14270

    Article  Google Scholar 

  27. Li Y, Zou Y (2008) Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility. Adv Mater 20:2952–2958

    Article  Google Scholar 

  28. Zhang W, Tse SC, Lu J, Tao Y, Wong MS (2010) Solution processable donor–acceptor oligothiophenes for bulk-heterojunction solar cells. J Mater Chem 20:2182–2189

    Article  Google Scholar 

  29. Kirchartz T, Taretto K, Rau U (2009) Efficiency limits of organic bulk heterojunction solar cells. J Phys Chem C 113:17958–17966

    Article  Google Scholar 

  30. Lin H-C, Jin B-Y (2010) Charge-transfer interactions in organic functional materials. Materials 3:4214–4251

    Article  ADS  Google Scholar 

  31. Soci C, Hwang IW, Moses D, Zhu Z, Waller D, Gaudiana R, Brabec CJ, Heeger AJ (2007) Photoconductivity of a low-bandgap conjugated polymer. Adv Funct Mater 17:632–636

    Article  Google Scholar 

  32. Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca JV (2009) On the origin of the open-circuit voltage of polymer–fullerene solar cells. Nat Mater 8:904–909

    Article  ADS  Google Scholar 

  33. Liu T, Troisi A (2013) What makes fullerene acceptors special as electron acceptors in organic solar cells and how to replace them. Adv Mater 25:1038–1041

    Article  Google Scholar 

  34. Mihailetchi VD, Xie HX, de Boer B, Koster LJA, Blom PWM (2006) Charge transport and photocurrent generation in Poly(3-hexylthiophene): Methanofullerene bulk-heterojunction solar cells. Adv Funct Mater 16:699–708

    Article  Google Scholar 

  35. Yong X, Zhang JA (2011) Rational design strategy for donors in organic solar cells: the conjugated planar molecules possessing anisotropic multibranches and intramolecular charge transfer. J Mater Chem 21:11159–11166

    Article  Google Scholar 

  36. Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15:1617–1622

    Article  Google Scholar 

  37. Price SC, Stuart AC, Yang L, Zhou H, You W (2011) Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer−fullerene solar cells. J Am Chem Soc 133:4625–4631

    Article  Google Scholar 

  38. Allemand P-M, Koch A, Wudl F (1991) Two different fullerenes have the same cyclic voltammetry. J Am Chem Soc 113:1050–1051

    Article  Google Scholar 

  39. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258:1474–1476

    Article  ADS  Google Scholar 

  40. He Y, Li Y (2011) Fullerene derivative acceptors for high performance polymer solar cells. Phys Chem Chem Phys 13:1970–1983

    Article  Google Scholar 

  41. Thompson BC, Frechet JMC (2008) Polymer–fullerene composite solar cells. Angew Chem Int Ed 47:58–77

    Article  Google Scholar 

  42. Sonar P, Singh SP, Leclere P, Surin M, Lazzaroni R, Lin TT, Dodabalapur A, Sellinger A (2009) Synthesis, characterization and comparative study of thiophene–benzothiadiazole based donor–acceptor–donor (D–A–D) materials. J Mater Chem 19:3228–3237

    Article  Google Scholar 

  43. Zhu W, Wu Y, Wang S, Li W, Li X, Chen J, Wang Z-S, Tian H (2011) Organic D–A-π-A solar cell sensitizers with improved stability and spectral response. Adv Funct Mater 21:756–763

    Article  Google Scholar 

  44. Chen H-Y, Yeh S-C, Chen C-T, Chen C-T (2012) Comparison of thiophene- and selenophene-bridged donor–acceptor low band-gap copolymers used in bulk-heterojunction organic photovoltaics. J Mater Chem 22:21549–21559

    Article  MathSciNet  Google Scholar 

  45. Qian G, Dai B, Luo M, Yu D, Zhan J, Zhang Z, Ma D, Wang ZY (2008) Band gap tunable, donor–acceptor–donor charge-transfer heteroquinoid-based chromophores: near infrared photoluminescence and electroluminescence. Chem Mater 20:6208–6216

    Article  Google Scholar 

  46. Zhang J, Yang Y, He C, He Y, Zhao G, Li Y (2009) Solution-processable star-shaped photovoltaic organic molecule with triphenylamine core and benzothiadiazole-thiophene arms. Macromolecules 42:7619–7622

    Article  ADS  Google Scholar 

  47. Li Y, Xu X, Li Z, Yu T, Peng Q (2015) Two-dimensional photovoltaic copolymers with spatial D–A–D structures: Synthesis, characterization and hetero-atom effect. Sci China Chem 58:276–285

    Article  Google Scholar 

  48. Kim YJ, Lee GB, Jeon CW, Kim Y-H, Chung DS, Park CE (2015) A push–pull organic semiconductor with efficient intramolecular charge transfer for solution-processed small molecule solar cells. RSC Adv 5:3435–3442

    Article  Google Scholar 

  49. Tang S, Zhang J (2011) Rational design of organic asymmetric donors D1–A–D2 possessing broad absorption regions and suitable frontier molecular orbitals to match typical acceptors toward solar cells. J Phys Chem A 115:5184–5191

    Article  Google Scholar 

  50. So S, Choi H, Ko HM, Kim C, Paek S, Cho N, Song K, Lee JK, Ko J (2012) Novel unsymmetrical push–pull squaraine chromophores for solution processed small molecule bulk heterojunction solar cells. Sol Energy Mater Sol Cells 98:224–232

    Article  Google Scholar 

  51. Bredas J-L, Norton JE, Cornil J, Coropceanu V (2009) Molecular understanding of organic solar cells: the challenges. Acc Chem Res 42:1691–1699

    Article  Google Scholar 

  52. Ninga Z, Tian H (2009) Triarylamine: a promising core unit for efficient photovoltaic materials Chem Commun, 5483–5495

  53. Yuan L, Zhao Y, Lu K, Deng D, Yan W, Wei Z (2014) Small molecules incorporating regioregular oligothiophenes and fluorinated benzothiadiazole groups for solution-processed organic solar cells. J Mater Chem C 2:5842–5849

    Article  Google Scholar 

  54. Hou Q, Xu Y, Yang W, Yuan M, Peng J, Cao Y (2002) Novel red-emitting fluorene-based copolymers. J Mater Chem 12:2887–2892

    Article  Google Scholar 

  55. Neto BAD, Lapis AAM, da Silva Júnior EN, Dupont J (2013) 2,1,3-Benzothiadiazole and derivatives: synthesis, properties, reactions, and applications in light technology of small molecules. Eur J Org Chem 2:228–255

    Article  Google Scholar 

  56. Planells M, Schroeder BC, McCulloch I (2014) Effect of chalcogen atom substitution on the optoelectronic properties in cyclopentadithiophene polymers. Macromolecules 47:5889–5894

    Article  ADS  Google Scholar 

  57. Yang RQ, Tian RY, Hou Q, Yong Z, Li YF, Yang W, Zhang C, Cao Y (2005) Light-emitting copolymers based on fluorene and selenophene-comparative studies with its sulfur analogue: poly(fluorene-co-thiophene). J Polym Sci Part A Polym Chem 43:823

    Article  ADS  Google Scholar 

  58. Alghamdi AAB, Watters DC, Yi H, Al-Faifi S, Almeataq MS, Coles D, Kingsley J, Lidzey DG, Iraqi A (2013) Selenophene vs. thiophene in benzothiadiazole-based low energy gap donor–acceptor polymers for photovoltaic applications. J Mater Chem A 1:5165–5171

    Article  Google Scholar 

  59. Kohn W, Sham JL (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  ADS  MathSciNet  Google Scholar 

  60. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  61. Adamo C, Barone V (1999) Towards reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  ADS  Google Scholar 

  62. Ernzerhof M, Scuseria GE (1999) Assessment of the perdew–burke–ernzerhof exchange-correlation functional. J Chem Phys 110:5029–5036

    Article  ADS  Google Scholar 

  63. Gahungu G, Zhang J (2008) Shedding light on octathio[8]circulene and some of its plate-like derivatives. Phys Chem Chem Phys 10:1743–1747

    Article  Google Scholar 

  64. Gahungu G, Zhang B, Zhang J (2007) Design of tetrathiafulvalene-based phosphazenes combining a good electron-donor capacity and possible inclusion adduct formation (part II). J Phys Chem C 111:4838–4846

    Article  Google Scholar 

  65. Jacquemin D, Perpete EA (2006) Ab initio calculations of the colour of closed-ring diarylethenes: TD-DFT estimates for molecular switches. Chem Phys Lett 429:147–152

    Article  ADS  Google Scholar 

  66. Jacquemin D, Preat J, Wathelet V, Fontaine M, Perpete EA (2006) Thioindigo dyes: highly accurate visible spectra with TD-DFT. J Am Chem Soc 128:2072–2083

    Article  Google Scholar 

  67. Perpete EA, Preat J, Andre J-M, Jacquemin D (2006) An ab initio study of the absorption spectra of indirubin, isoindigo, and related derivatives. J Phys Chem A 110:5629–5635

    Article  Google Scholar 

  68. Lopez-Martinez EI, Rodriguez-Valdez LM, Flores-Holguin N, Marquez-Lucero A, Glossman-Mitnik D (2009) Theoretical study of electronic properties of organic photovoltaic materials. J Comput Chem 30:1027–1037

    Article  Google Scholar 

  69. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  ADS  Google Scholar 

  70. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. potentials for main group elements Na to Bi. J Chem Phys 82:284–298

    Article  ADS  Google Scholar 

  71. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310

    Article  ADS  Google Scholar 

  72. Furche F, Ahlrichs R (2002) Adiabatic time-dependent density functional methods for excited state properties. J Chem Phys 117:7433–7447

    Article  ADS  Google Scholar 

  73. Gorelsky SI (2007) SWizard Program. University of Ottawa, Ottawa, Canada. http://www.sg-chem.net/

  74. Tenderholt AL QMForge, Version 2.1. Stanford University, Stanford, CA, USA

  75. Hirsch J (1979) Hopping transport in disordered aromatic solids: a re-interpretation of mobility measurements on PKV and TNF. J Phys C Solid State Phys 12:321–336

    Article  ADS  Google Scholar 

  76. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J-L (2007) Charge transport in organic semiconductors. Chem Rev 107:926–952

    Article  Google Scholar 

  77. Yang X, Wang L, Wang C, Long W, Shuai Z (2008) Influences of crystal structures and molecular sizes on the charge mobility of organic semiconductors: oligothiophenes. Chem Mater 20:3205–3211

    Article  Google Scholar 

  78. Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. I. J Chem Phys 24:966–978

    Article  ADS  Google Scholar 

  79. Lin BC, Cheng CP, You ZQ, Hsu CP (2005) Charge transport properties of tris(8-hydroxyquinolinato)aluminum(III): why it is an electron transporter. J Am Chem Soc 127:66–67

    Article  Google Scholar 

  80. Yamada T, Sato T, Tanaka K, Kaji H (2010) Percolation paths for charge transports in N, N′-diphenyl-N, N′-di(M-tolyl)benzidine (TPD). Org Electron 11:255–265

    Article  Google Scholar 

  81. Yamada T, Suzuki F, Goto A, Sato T, Tanaka K, Kaji H (2011) Revealing bipolar charge-transport property of 4,4′-N, N′-dicarbazolylbiphenyl (CBP) by quantum chemical calculations. Org Electron 12:169–178

    Article  Google Scholar 

  82. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, revision A.02; Gaussian, Inc., Wallingford, CT

  83. Patel DG, Feng F, Ohnishi Y, Abboud KA, Hirata S, Schanze KS, Reynolds JR (2012) It takes more than an imine: the role of the central atom on the electron-accepting ability of benzotriazole and benzothiadiazole oligomers. J Am Chem Soc 134:2599–2612

    Article  Google Scholar 

  84. Tamayo AB, Walker B, Nguyen TQ (2008) A low band gap, solution processable oligothiophene with a diketopyrrolopyrrole core for use in organic solar cells. J Phys Chem C 112(30):11545–11551

    Article  Google Scholar 

  85. Nelsen SF, Blackstock SC, Kim Y (1987) Estimation of inner shell marcus terms for amino nitrogen compounds by molecular orbital calculations. J Am Chem Soc 109:677–682

    Article  Google Scholar 

  86. Zhang WW, Zhu WJ, Liang WZ, Zhao Y, Nelsen SF (2008) Ab initio calculations on the intramolecular electron transfer rates of a bis(hydrazine) radical cation. J Phys Chem B 112:11079–11086

    Article  Google Scholar 

  87. Brédas J-L, Beljonne D, Coropceanu V, Cornil J (2004) Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem Rev 104:4971–5004

    Article  Google Scholar 

  88. Gruhn NE, da Silva Filho DA, Bill TG, Malagoli M, Coropceanu V, Kahn A, Brédas J-L (2002) The vibrational reorganization energy in pentacene: molecular influences on charge transport. J Am Chem Soc 124:7918–7919

    Article  Google Scholar 

  89. Mandoc MM, Koster LJA, Blom PWM (2007) Optimum charge carrier mobility in organic solar cells. Appl Phys Lett 90:133504–133506

    Article  ADS  Google Scholar 

  90. Peet J, Heeger AJ, Bazan GC (2009) “Plastic” solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. Acc Chem Res 42:1700–1708

    Article  Google Scholar 

  91. Venkataraman D, Yurt S, Venkatraman BH, Gavvalapalli N (2010) Role of molecular architecture in organic photovoltaic cells. J Phys Chem Lett 1:947–958

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the CSIR-Central Leather Research Institute (CLRI) funded through the Council of Scientific and Industrial Research (CSIR) under the “Technologies and Products for Solar Energy Utilization through Networks (CSIR-TAPSUN)” programme entitled “Novel Approaches for Solar Energy Conversion” (NWP-54).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Subramanian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 9668 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shyam Vinod Kumar, P., Varathan, E., Vijay, D. et al. Theoretical Design of Benzoselenadiazole Based Organic Donor Molecules for Solar Cell Applications. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 86, 297–312 (2016). https://doi.org/10.1007/s40010-016-0275-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-016-0275-z

Keywords

Navigation