Gas-Phase Molecular Spectroscopy in the Past Five Decades: Bearings of the Advancements in Light Source Technologies


A brief overview of the advancements in vibrational and electronic spectroscopy studies of cold molecules and clusters owing to merger of supersonic jet expansion technique with tunable lasers, which happened nearly three decades ago, is presented. Combination of the two techniques helped preparation of molecules in well defined quantum states, and thus allowed investigations of the ensuing dynamics of the prepared states through reactive and non-reactive channels. The accumulated literature in these fields of science, since lasers became easily available as light sources, is huge. Therefore, only selected studies, solely according to personal preferences of the authors, are presented.

This is a preview of subscription content, access via your institution.


  1. 1.

    Balle TJ, Flygare WH (1981) Fabry-Perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle source. Rev Sci Instrum 52:33–45

    Article  ADS  Google Scholar 

  2. 2.

    Brown GG, Dian BC, Douglass KO, Geyer SM, Shipman ST, Pate BH (2008) A broadband Fourier transform microwave spectrometer based on chirped pulse excitation. Rev Sci Instrum 79:053103

    Article  ADS  Google Scholar 

  3. 3.

    Pribble RN, Zwier TS (1994) Size-specific infrared spectra of benzene-(H2O) n  clusters (n = 1 through 7): evidence for noncyclic (H2O) n  structures. Science 265:75–84

    Article  ADS  Google Scholar 

  4. 4.

    Mason SF (1959)The electronic spectra of N-heteroaromatic systems. Part V. The rotational structure of the vibrationless band in the n→π transition of sym-tetrazine. J Chem Soc 1269–1274

  5. 5.

    Riedle E, Neusser HJ, Schlag EW (1981) Electronic spectra of polyatomic molecules with resolved individual rotational transitions: Benzene. J Chem Phys 75:4231–4240

    Article  ADS  Google Scholar 

  6. 6.

    Smalley RE, Wharton L, Levy DH (1977) Molecular optical spectroscopy with supersonic beams and jets. Acc Chem Res 10:139–145

    Article  Google Scholar 

  7. 7.

    Majewski W, Meerts WL (1981) Near-UV spectra with fully resolved rotational structure of naphthalene and perdeuterated naphthalene. J Mol Spectrosc 104:271–281

    Article  ADS  Google Scholar 

  8. 8.

    Borst DR, Pratt DW (2000) Toluene: structure, dynamics, and barrier to methyl group rotation in its electronically excited state. A route to IVR. J Chem Phys 113:3658–3669

    Article  ADS  Google Scholar 

  9. 9.

    Berden G, Meerts WL, Schmitt M, Kleinermans K (1996) High resolution UV spectroscopy of phenol and the hydrogen bonded phenol-water cluster. J Chem Phys 104:972–982

    Article  ADS  Google Scholar 

  10. 10.

    Kommandeurm J, Majewski WA, Meerts WL, Pratt DW (1987) Pyrazine: an exact solution to the problem of radiationless transitions. Ann Rev Phys Chem 38:433–462

    Article  ADS  Google Scholar 

  11. 11.

    Bartelt A, Close JD, Federmann F, Quaas N, Toennies JP (1996) Cold metal clusters: helium droplets as a nanoscale cryostat. Phys Rev Lett 77:3525–3528

    Article  ADS  Google Scholar 

  12. 12.

    Hartmann M, Miller RE, Toennies JP, Vilesov AF (1996) High-resolution molecular spectroscopy of van der Waals clusters in liquid helium droplets. Science 272:1631–1634

    Article  ADS  Google Scholar 

  13. 13.

    Grebenev S, Toennies JP, Vilesov AF (1998) Superfluidity within a small Helium-4 cluster: the microscopic Andronikashvili experiment. Science 279:2083–2086

    Article  ADS  Google Scholar 

  14. 14.

    O’Keefe A, Deacon DAG (1988) Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev Sci Instrum 59:2544–2551

    Article  ADS  Google Scholar 

  15. 15.

    Wheeler MD, Newman SM et al (1998) Cavity ring-down spectroscopy. J ChemSoc Faraday Trans 94:337–351

    Article  Google Scholar 

  16. 16.

    Romanini D, Lehmann KK (1993) Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta. J Chem Phys 99:6287–6301

    Article  ADS  Google Scholar 

  17. 17.

    Keutsch FN, Saykally RJ (2001) Water clusters: untangling the mysteries of the liquid, one molecule at a time. Proc Natl AcadSci USA 98:10533–10540

    Article  ADS  Google Scholar 

  18. 18.

    Rizzo TR, Park YD, Levy DH (1986) Dispersed fluorescence of jet-cooled tryptophan: excited state conformers of intramolecular exciplex formation. J Chem Phys 85:6945–6951

    Article  ADS  Google Scholar 

  19. 19.

    Das A, Mahato KK, Chakraborty T (2001) Jet spectroscopy of van der Waals dimers of 1-methoxynaphthalene: a laser-induced fluorescence study. J Chem Phys 114:8310

    Article  ADS  Google Scholar 

  20. 20.

    Shin JW, Hammer NI, Diken EG, Johnson MA, Walters RS, Jaeger TD, Duncan MA, Christie RA, Jordan KD (2004) Infrared signature of structures associated with the H+(H2O) n  (n = 6 to 27) Clusters. Science 304:1137–1140

    Article  ADS  Google Scholar 

  21. 21.

    Avouris P, Gelbart WM, El-Sayed MA (1977) Nonradiative electronic relaxation under collision-free conditions. Chem Rev 77:793–833

    Article  Google Scholar 

  22. 22.

    Hollas JM, Phillips D (1995) Jet spectroscopy and molecular dynamics. Springer, New York

    Book  Google Scholar 

  23. 23.

    Felker PM, Zewail AH (1984) Direct observation of non-chaotic multilevel vibrational energy flow in isolated polyatomic molecules. Phys Rev Lett 53:501–504

    Article  ADS  Google Scholar 

  24. 24.

    Mokhtari A, Cong P, Herek JL, Zewail AH (1990) Direct femtosecond mapping of trajectories in a chemical reaction. Nature 348:225–227

    Article  ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Tapas Chakraborty.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banerjee, P., Chakraborty, T. Gas-Phase Molecular Spectroscopy in the Past Five Decades: Bearings of the Advancements in Light Source Technologies. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 85, 501–505 (2015).

Download citation


  • High-resolution spectroscopy
  • Liquid helium
  • Ion dip
  • Fluorescence dip
  • Dispersed fluorescence
  • Vibrational dynamics
  • Femtochemistry