Skip to main content

Advertisement

Log in

A Theoretical Study of Hydrogen Bonded Ferroelectric Nd-TGS Crystals

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

Two theoretical models have been applied to neodymium doped triglycine sulphate (Nd-TGS) hydrogen bonded crystal pseudo spin and derived local field frequency, shift and width, polarizability, microwave absorption, acoustic wave absorption, quality factor, photo-electric sensitivity and electric resistivity in good agreement with the experimental results. Due to the similar mechanism in crystal dynamics of all hydrogen bonded ferroelectric materials, we are able to apply a common model over the crystal structure with some contemporary modifications according to different crystal lattice. By this method we can derive different relations for ferroelectric crystals even in with biased condition. We have applied the two theoretical models i.e., pseudo spin lattice coupled mode model and Ising spin model with Green’s function method to Nd-TGS to derive different expressions for the dielectric, acoustic, photothermal and electric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Banan B, Lal RB, Batra A (1992) Modified triglycine sulphate (TGS) single crystals for pyroelectric infrared detector application. J Mater Sci 27(9):2291–2297

    Article  ADS  Google Scholar 

  2. Batra AK, Mathur SC (1985) Electric conductivity of doped triglycine sulphate crystals. J Mater Sci Lett 4(6):679–680

    Article  ADS  Google Scholar 

  3. Blinc R, Detoni S, Pintar M (1961) Nature of the ferroelectric transition in triglycine sulphate. Phys Rev 124:1036–1038

    Article  ADS  Google Scholar 

  4. Bye KL, Whipps PW, Keve ET (1972) High internal bias fields in tgs (l-alanine). Ferroelectrics 4(1):253–256

    Article  Google Scholar 

  5. Chaudhuri BK, Chaudhari KR, Banerjee S (1988) Green’s-function theory of ferroelectric phase transitions in hydrogen-bonded triglycine sulphate with the pseudospin lattice coupled-mode model: a unified theory of structural phase transitions. II. Nonlinear properties. Phys Rev B 38(1):689

    Article  ADS  Google Scholar 

  6. Fang CS, Wang M, Zhuo HS (1989) ADTGSP single crystal with high pyroelctric figure of merit. Ferroelectrics 91(1):373–377

    Article  Google Scholar 

  7. Gaffar MA, Al-Houty LI, Al-Muraikhi M (1987) The dffect of doping crystals of TGS with some di- and trivalent ions on its: (I) dielectric constant and A.C. conductivity. Qatar Univ Sci Bull 7:39–53

    Google Scholar 

  8. Gonzalo JA (1970) Equation of state for the cooperative transition of triglycine sulphate near Tc. Phys Rev B 1(7):3125–3132

    Article  ADS  Google Scholar 

  9. Hill RM, Ichiki SK (1963) High-frequency behaviour of hydrogen-bonded ferroelectric: triglycine sulphate and KD2PO4. Phys Rev 132(4):1603–1608

    Article  ADS  Google Scholar 

  10. Kim JS, Choi BC, Yang HK, Jeong JH (2008) Low-frequency dielectric dispersion and electric conductivity of pure and La-Doped SrBi2Nb2O9 ceramics. J Korean Phys Soc 52(2):415–420

    Article  Google Scholar 

  11. Lal RB, Batra AK (1993) Growth and properties of triglycine sulphate (TGS) crystals: review. Ferroelectrics 142(1):51–82

    Article  Google Scholar 

  12. Mathias BT, Miller CE, Remeika JP (1956) Ferroelectricity of glycine sulphate. Phys Rev 104(3):849–850

    Article  ADS  Google Scholar 

  13. Mitsui T (1958) Theory of the ferroelectric effect in Rochelle salt. Phys Rev 111(5):1259–1267

    Article  ADS  Google Scholar 

  14. Rao KS, Krishna PM, Prasad DM, Latha TS, Satyanarayana C (2008) Low frequency dielectric dispersion studies in ferroelectric ceramics of Pb0.77K0.26Li0.2Ti0.25Nb1.8O6. Indian J Eng Mater Sci 15(2):215–223

    Google Scholar 

  15. Ramakrishnan V, Tanaka T (1977) Green’s-function theory of the ferroelectric phase transition in potassium dihydrogen phosphate (KDP). Phys Rev B 16(1):422–426

    Article  ADS  Google Scholar 

  16. Shreekumar R, Philip J (1994) Ultrasonic study of the para-ferroelectric phase transition in phosphate doped TGS crystals. Ferroelectrics 160(1):23–33

    Article  Google Scholar 

  17. Zubarev DN (1960) Double-time green functions in statistical physics. Sov Phys Usp 3(3):320–345

    Article  MathSciNet  ADS  Google Scholar 

  18. Hoshino S, Okaya Y, Pepinsky R (1959) Crystal structure of the ferroelectric Phase of (Glycine)3.H2SO4. Phys Rev 115:323–330

    Google Scholar 

  19. Itoh K, Mitsui T (1973) Studies of the crystal structure of triglycine sulphate in connection with its ferroelectric phase transition. Ferroelectrics 5(1):235–251

    Google Scholar 

Download references

Acknowledgments

The authors are thankful R. P. Gairola (Head of physics department, H.N.B.G.U.), B. N. Jagtap (BARC, Mumbai), S. K. Srivastava (B.U. Jhansi), S. C. Bhatt (H.N.B.G.U.), U. C. Nathani (H.N.B.G.U. Pauri), K. S. Bartwal (RRCAT, Indore), Sudhir Kumar (Rohilkhand University, Bareilly) and Vinay Gupta (Delhi University) for their kind suggestions in literature study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Nautiyal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nautiyal, A., Upadhyay, T.C. A Theoretical Study of Hydrogen Bonded Ferroelectric Nd-TGS Crystals. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 82, 335–342 (2012). https://doi.org/10.1007/s40010-012-0043-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-012-0043-7

Keywords

Navigation