Skip to main content
Log in

Proton NMR and Chromatography-Based Phytochemical Analysis of Cajanus cajan Pods

  • SHORT COMMUNICATION
  • Published:
National Academy Science Letters Aims and scope Submit manuscript

Abstract

The present research work was aimed towards the preparation of different of C. cajan (Fabaceae) pods; their phytochemical analysis by 1H-NMR, HPTLC and hyphenated techniques like HR-LC/MS and GC-MS. Based on results of preliminary phytochemical studies, petroleum ether and ethanolic extracts were selected for further 1H-NMR, HPTLC and HR-LC/MS and GC-MS analysis. After preliminary detection of phytochemicals, ethanolic and petroleum ether extracts of C. cajan pods tested for distribution of hydrogens in phytochemicals using 1H-NMR. Then, HPTLC profiling of both extracts confirmed the classes of phytochemicals. Further, HR-LC/MS analysis of ethanolic extract carried out at both positive and negative ion mode, indicated the presence of more than 70 compounds, many of which, as per METLIN database, predicted as phytochemicals were different types of flavonoids and other iridoids and terpenoids. GC-MS analysis of petroleum ether extract showed various non-polar compounds, which were predicted as simple hydrocarbons. Previous reports revealed that most of these predicted compounds are biologically active. C. cajan pods contain different phytochemicals like flavonoids, iridoids, steroids, both in free and glycosidic forms and also non-polar hydrocarbons; appearance of all these compounds is significant in chemotaxonomic surveillance of this plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Availability of Data and Material

No additional data and material other than manuscript is to produce.

References

  1. Patil SP, Chaudhari RY (2021) Phytochemicals present in Cajanus cajan and its use in green synthesis of metal and metal oxide nanoparticles. Int J Pharm Investig 11(1):1–4. https://doi.org/10.5530/ijpi.2021.1.1

    Article  CAS  Google Scholar 

  2. Kumar Rao JVDK (1990) Pigeonpea: nitrogen fixation. In: Nene YL, Hall SD, Sheila VK (eds) The pigeonpea. CAB International, Wallingford, UK, pp 233–256

    Google Scholar 

  3. Sheldrake AR (1984) Pigeonpea. In: Goldsworth PR, Fisher NM (eds) The physiology of tropical field crops. John Wiley & Co, Chichester, USA, pp 385–417

    Google Scholar 

  4. Bisen SS, Sheldrake AR (1981) The anatomy of the pigeonpea. Research bulletin no. 5. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India, p 24

    Google Scholar 

  5. Sundaraj DD, Thulasidas G (1980) Botany of field crops. The Macmillan Company of India Ltd, New Delhi

    Google Scholar 

  6. Hassan EM, Matloub AA, Aboutabl ME, Ibrahim NA, Mohamed SM (2016) Assessment of anti-inflammatory, antinociceptive, immunomodulatory and antioxidant activities of Cajanus cajan L. seeds cultivated in Egypt and its phytochemical composition. Pharm Biol 54(8):1380–1391. https://doi.org/10.3109/13880209.2015.1078383

    Article  CAS  PubMed  Google Scholar 

  7. Wei Z, Zu Y, Fu Y, Wang W, Luo M, Zhao C, Pan Y (2013) Ionic liquids-based microwave-assisted extraction of active components from pigeon pea leaves for quantitative analysis. Sep Purif Technol 102:75–81. https://doi.org/10.1016/j.seppur.2012.09.031

    Article  CAS  Google Scholar 

  8. Kokate CK (2018) Practical pharmacognosy. Vallabh Prakashan, New Delhi

    Google Scholar 

  9. Wagner H, Bladt S (2001) Plant Drug Analysis A Thin Layer Chromatography Atlas, 2nd edn. Springer-Verlag, Berlin, Heidelberg, pp 88 and 168

    Google Scholar 

  10. Kumbhar ST, Patil SP, Une HD (2018) Phytochemical analysis of Canna indica L. roots and rhizomes extract. Biochem Biophys Rep 16:50–55. https://doi.org/10.1016/j.bbrep.2018.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  11. Patil SP, Kumbhar ST (2017) Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves. 2017. Biochem Biophys Rep 10:76–81. https://doi.org/10.1016/j.bbrep.2017.03.002

    Article  Google Scholar 

  12. Dymarska M, Janeczko T, Kostrzewa-Susłow E (2018) Glycosylation of methoxylated flavonoids in the cultures of Isaria fumosorosea KCH J2. Molecules 23(10):2578. https://doi.org/10.3390/molecules23102578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee TG, Kim DK (2013) Iridoid compounds from the whole plant of Galium verum var. asiaticum. Nat Prod Sci 19(3):227–230

    CAS  Google Scholar 

  14. Muhaisen HM (2014) Introduction and interpretation of flavonoids. Adv Sci Eng Med 6(12):1235–1250. https://doi.org/10.1166/asem.2014.1630

    Article  CAS  Google Scholar 

  15. Ragasa CY, Soriano G, Torres OB, Don MJ, Shen CC (2012) Acetogenins from Annona muricata. Pharmacogn J 4(32):32–37. https://doi.org/10.5530/pj.2012.32.7

    Article  CAS  Google Scholar 

  16. Andersen OM, Markham KR (2005) Flavonoids: chemistry, biochemistry and applications. CRC Press, Florida

    Book  Google Scholar 

  17. Jain PS, Bari SB (2010) Isolation of lupeol, stigmasterol and campesterol from petroleum ether extract of woody stem of Wrightia tinctoria. Asian J Plant Sci 9(3):163. https://doi.org/10.3923/ajps.2010.163.167

    Article  CAS  Google Scholar 

  18. Di Pietro ME, Mann A, Mele A (2020) NMR determination of free fatty acids in vegetable oils. Processes 8(4):410. https://doi.org/10.3390/pr8040410

    Article  CAS  Google Scholar 

  19. Malburet S, Mauro CD, Noe C, Mija A, Sangermano M, Graillot A (2020) Sustainable access to fully biobased epoxidized vegetable oil thermoset materials prepared by thermal or UV-cationic processes. RSC Adv 10:41954. https://doi.org/10.1039/d0ra07682a

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumar R, Bansal V, Tiwari AK, Sharma M, Puri SK, Patel MB, Sarpal AS (2011) Estimation of glycerides and free fatty acid in oils extracted from various seeds from the Indian region by NMR spectroscopy. J Am Oil Chem Soc 88:1675–1685. https://doi.org/10.1007/s11746-011-1846-4

    Article  CAS  Google Scholar 

  21. Dais P, Plessel R, Williamson K, Hatzakis E (2017) Complete 1H and 13C NMR assignment and 31P NMR determination of pentacyclic triterpenic acids. Anal Methods 9(6):949–957. https://doi.org/10.1039/C6AY02565J

    Article  CAS  Google Scholar 

  22. Patel DK, Dhanabal SP (2013) Development of bioanalytical parameters for the standardization of Zingiber officinale. J Acute Dis 2(2):134–136. https://doi.org/10.1016/S2221-6189(13)60113-4

    Article  Google Scholar 

  23. Kaur P, Pandey DK, Gupta RC, Dey A (2019) Simultaneous microwave assisted extraction and HPTLC quantification of mangiferin, amarogentin, and swertiamarin in Swertia species from Western Himalayas. Ind Crops Prod 132:449–459. https://doi.org/10.1016/j.indcrop.2019.02.055

    Article  CAS  Google Scholar 

  24. Soran ML, Lung I (2010) HPTLC analysis of thymol in extracts of Satureja hortensis L. obtained by different techniques. JPC J Planar Chromat 23:320–322. https://doi.org/10.1556/JPC.23.2010.5.2

    Article  CAS  Google Scholar 

  25. Gupta P, Patil D, Patil A (2019) Qualitative HPTLC phytochemical profling of Careya arborea Roxb. bark, leaves and seeds. Biotech 9:311. https://doi.org/10.1007/s13205-019-1846-x

    Article  Google Scholar 

  26. Naik AV, Sellappan K (2020) Chromatographic fingerprint of essential oils in plant organs of Annona muricata L. (Annonaceae) using HPTLC. Anal Chem Lett 10(2):214–226. https://doi.org/10.1080/22297928.2020.1763197

    Article  CAS  Google Scholar 

  27. Rafeeq MM, Haque S, Sain ZM, Alzamami A, Alturki NA, Mashraqi MM, Alghamdi YS, Alniwaider RA, Patel A (2021) Sodium-glucose cotransporter-2 inhibitors as modulator of dipeptidyl peptidase-4 in diabetes. Ind J Pharm Edu Res 55(4):1008–1016. https://doi.org/10.5530/ijper.55.4.201

    Article  CAS  Google Scholar 

  28. You MJ, Kim BM, Bhatt LK, Chai KY, Baek SH (2010) Inhibitory effect of sakuranetin on (1,3)-β-glucan synthase. Orient Pharm Exp Med 10(1):44–49. https://doi.org/10.3742/OPEM.2010.10.1.044

    Article  Google Scholar 

  29. Matsuura N, Aradate T, Kurosaka C, Ubukata M, Kittaka S, Nakaminami Y, Gamo K, Kojima H, Ohara M (2014) Potent protein glycation inhibition of Plantagoside in Plantago major seeds. Biomed Res Int. https://doi.org/10.1155/2014/208539

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yamada H, Nagai T, Takemoto N et al (1989) Plantagoside, a novel α-mannosidase inhibitor isolated from the seeds of Plantago asiatica, suppresses immune response. Biochem Biophys Res Commun 165(3):1292–1298. https://doi.org/10.1016/0006-291X(89)92743-5

    Article  CAS  PubMed  Google Scholar 

  31. Schwingel LC, Schwingel GO, Storch N, Barreto F, Bassani VL (2014) 3-O-Methylquercetin from organic Nicotiana tabacum L. trichomes: influence of the variety, cultivation and extraction parameters. Ind Crops Prod 55:56–62. https://doi.org/10.1016/j.indcrop.2014.01.054

    Article  CAS  Google Scholar 

  32. Kumar ADN, Bevara GB, Kaja LK, Badana AK, Malla RR (2016) Protective effect of 3-O-methyl quercetin and kaempferol from Semecarpus anacardium against H2O2 induced cytotoxicity in lung and liver cells. BMC Complement Altern Med 16:376. https://doi.org/10.1186/s12906-016-1354-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shigetomi K, Shoji K, Mitsuhashi S, Ubukata M (2010) The antibacterial properties of 6-tuliposide B. Synthesis of 6-tuliposide B analogues and structure–activity relationship. Phytochem 71:312–324. https://doi.org/10.1016/j.phytochem.2009.10.008

    Article  CAS  Google Scholar 

  34. Hidalgo W, Chandran JN, Menezes RC, Otálvaro F, Schneider B (2016) Phenylphenalenones protect banana plants from infection by Mycosphaerella fijiensis and are deactivated by metabolic conversion. Plant Cell Environ 39:492–513. https://doi.org/10.1111/pce.12630

    Article  CAS  PubMed  Google Scholar 

  35. Zhao HY, Shao CL, Li ZY, Han L, Cao F, Wang CY (2013) Bioactive pregnane steroids from a South China Sea Gorgonian Carijoa sp. Molecules 18:3458–3466. https://doi.org/10.3390/molecules18033458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sastry VMVS, Rao GRK (1995) Dioctyl phthalate, and antibacterial compound from the marine brown alga—Sargassum wightii. J Appl Phycol 7:185–186. https://doi.org/10.1007/BF00693066

    Article  CAS  Google Scholar 

  37. Tiji S, Rokni Y, Benayad O, Laaraj N, Asehraou A, Mimouni M (2021) Chemical composition related to antimicrobial activity of Moroccan Nigella sativa L. extracts and isolated fractions. Evid Based Complement Altern Med. https://doi.org/10.1155/2021/8308050

    Article  Google Scholar 

Download references

Acknowledgements

We, the authors of this research article are thankful to NMR facility, Central Instrumentation Facility (CIF), Department of Chemistry, Savitribai Phule Pune University, Pune; Graduate School of Pharmacy, Gujarat Technological University, Gandhinagar; Sophisticated Analytical Instrument Facility (SAIF)—Indian Institute of Technology-Bombay, Mumbai for providing Proton NMR, HPTLC, and HR-LC/MS and GC-MS facilities, respectively.

Funding

No funding received for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shriniwas P. Patil.

Ethics declarations

Conflict of Interest

None.

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

All authors have approved the submission and publication in the National Academy Science Letters.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.P., Chaudhari, R.Y. & Nemade, M.S. Proton NMR and Chromatography-Based Phytochemical Analysis of Cajanus cajan Pods. Natl. Acad. Sci. Lett. 47, 139–145 (2024). https://doi.org/10.1007/s40009-023-01329-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40009-023-01329-5

Keywords

Navigation