Skip to main content

Advertisement

Log in

CRISPR/Cas9-Based Genome Editing as a Way Ahead for Inducing Production of Bioactive Metabolites in Endophytes

  • News/Views and Comments
  • Published:
National Academy Science Letters Aims and scope Submit manuscript

Abstract

Natural product research from plants has a long history of contribution in agriculture, human medicine and animal health. The success of targeting and screening novel bioactive secondary metabolites has been elevated manifold with increasing endophyte-related research and development. Numerous studies have documented synthesis of many plant-originated compounds from endo-microbiomes. Genomic editing based on CRISPR/Cas9 technology (CCT) has emerged as a useful tool for enhancing yield of desired metabolites derived from filamentous fungi particularly. With such appropriate genomic insight, biosynthetic genetic cluster can be tagged and identified at an accelerated pace in beneficial microbes. The CCT system concurrently edits multiple genes; thereby making multiple site mutations possible in lesser number of experimentation. This fast-tracked transformation procedure exorbitantly improves the low efficiency of previously known genomic editing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Chaudhary P, Khati P, Chaudhary A, Maithani D, Kumar G, Sharma A (2021) Cultivable and metagenomic approach to study the combined impact of nanogypsum and Pseudomonas taiwanensis on maize plant health and its rhizospheric microbiome. PLoS ONE 16(4):e0250574. https://doi.org/10.1371/journal.pone.0250574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chowdhary K, Kaushik N (2019) Biodiversity and in vitro inhibition study of fungal endophytes of Chlorophytum borivilianum against selected phytopathogens. Proc Natl Acad Sci India Sect B Biol Sci 89(1):113–121

    Article  Google Scholar 

  3. Chowdhary K, Kaushik N (2019) UPLC–MS and dereplication-based identification of metabolites in antifungal extracts of fungal endophytes. Proc Natl Acad Sci India Sect B Biol Sci 89(4):1379–1387

    Article  CAS  Google Scholar 

  4. Yang Q, Wu M, Zhu YL, Yang YQ, Mei YZ, Dai CC (2021) The disruption of the MAPKK gene triggering the synthesis of flavonoids in endophytic fungus Phomopsis liquidambaris. Biotech Lett 43(1):119–132

    Article  ADS  CAS  Google Scholar 

  5. Chowdhary K, Sharma S (2017) Potential of fungal endophytes in plant growth and disease management. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 275–290. https://doi.org/10.1007/978-981-10-5813-4_14

    Chapter  Google Scholar 

  6. Chaudhary P, Khati P, Gangola S, Kumar A, Kumar R, Sharma A (2021) Impact of nanochitosan and Bacillus spp. on health, productivity and defence response in Zea mays under field condition. 3Biotech 11(5):1–11

    Google Scholar 

  7. Kumari S, Sharma A, Chaudhary P, Khati P (2020) Management of plant vigor and soil health using two agriusable nanocompounds and plant growth promotory rhizobacteria in Fenugreek. 3Biotech 10:461. https://doi.org/10.1007/s13205-020-02448-2

    Article  Google Scholar 

  8. Zuccaro A, Lahrmann U, Güldener U, Langen G, Pfiffi S, Biedenkopf D, Kogel KH (2011) Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog 7(10):e10022906

    Article  Google Scholar 

  9. Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC (2012) IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40:D115–D122. https://doi.org/10.1093/nar/gkr1044

    Article  CAS  PubMed  Google Scholar 

  10. Bladt TT, Frisvad JC, Knudsen PB, Larsen TO (2013) Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi. Molecules 18(9):11338–11376

    Article  CAS  Google Scholar 

  11. Kumar P, Singh B, Thakur V, Thakur A, Thakur N, Pandey D, Chand D (2019) Hyper-production of taxol from Aspergillus fumigatus, an endophytic fungus isolated from Taxus sp. of the Northern Himalayan region. Biotechnol Rep 24:e00395

    Article  Google Scholar 

  12. Gauchan DP, Velez H, Acharya A, Ostman JR., Lunden K, Elfstrand M, Gil MRG (2020) Annulohypoxylon sp. strain MUS1, an endophyte isolated from Taxus wallichiana Zucc. produces taxol and other bioactive metabolites. bioRxiv

  13. Huang JX, Zhang J, Zhang XR, Zhang K, Zhang X, He XR (2014) Mucor fragilis as a novel source of the key pharmaceutical agents podophyllotoxin and kaempferol. Pharm Biol 52(10):1237–1243

    Article  CAS  Google Scholar 

  14. Pu X, Qu X, Chen F, Bao J, Zhang G, Luo Y (2013) Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl Microbiol Biotechnol 97(21):9365–9375

    Article  CAS  Google Scholar 

  15. Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28(3):1287–1294

    Article  CAS  Google Scholar 

  16. Hu L, Kang X, Shen P, Chen T, Zhang J, Liu D (2018) Detection of Huperzine A and Huperzine B in fermentation broth of endophytic fungus Colletotrichum gloesporioides from Huperzia serrate by HPLC. Chin J Biotechnol 34(5):777–784

    CAS  Google Scholar 

  17. Verma VC, Lobkovsky E, Gange AC, Singh SK, Prakash S (2011) Piperine production by endophytic fungus Periconia sp. isolated from Piper longum L. J Antibiot 64(6):427–431

    Article  CAS  Google Scholar 

  18. Vigneshwari A, Rakk D, Németh A, Kocsubé S, Kiss N, Csupor D, Szekeres A (2019) Host metabolite producing endophytic fungi isolated from Hypericum perforatum. PLoS ONE 14(5):e0217060

    Article  CAS  Google Scholar 

  19. Wang XJ, Min CL, Ge M, Zuo RH (2014) An endophytic sanguinarine-producing fungus from Macleaya cordata, Fusarium proliferatum BLH51. Curr Microbiol 68(3):336–341

    Article  CAS  Google Scholar 

  20. Kumara PM, Zuehlke S, Priti V, Ramesha BT, Shweta S, Ravikanth G, Shaanker RU (2012) Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook. f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 101(2):323–329

    Article  CAS  Google Scholar 

  21. Sarang H, Rajani P, Vasanthakumari MM, Kumara PM, Siva R, Ravikanth G, Shaanker RU (2017) An endophytic fungus, Gibberella moniliformis from Lawsonia inermis L. produces lawsone, an orange-red pigment. Antonie Van Leeuwenhoek 110(7):853–862

    Article  CAS  Google Scholar 

  22. Cui Y, Yi D, Bai X, Sun B, Zhao Y, Zhang Y (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 83(5):913–920

    Article  CAS  Google Scholar 

  23. Devari S, Jaglan S, Kumar M, Deshidi R, Guru S, Bhushan S, Kushwaha M, Gupta AP, Gandhi SG, Sharma JP, Taneja SC, Vishwakarma RA, Shah BA (2014) Capsaicin production by Alternaria alternata, an endophytic fungus from Capsicum annum; LC-ESI-MS/MS analysis. Phytochemistry 98:183–189

    Article  CAS  Google Scholar 

  24. Dwibedi V, Saxena S (2019) Arcopilus aureus, a resveratrol-producing endophyte from. Vitis vinifera. Appl Biochem Biotechnol 186(2):476–495

    Article  Google Scholar 

  25. Thi Minh Le T, Thi Hong Hoang A, Thi Bich Le T (2019) Isolation of endophytic fungi and screening of Huperzine A-producing fungus from Huperzia serrata in Vietnam. Sci Rep 9:16152. https://doi.org/10.1038/s41598-019-52481-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Le TTM, Hoang ATH, Nguyen NP (2020) A novel huperzine A-producing endophytic fungus Fusarium sp. Rsp5.2 isolated from Huperzia serrate. Biotechnol Lett 42:987–995

    Article  CAS  Google Scholar 

  27. El-Sayed AS, Abdel-Ghany SE, Ali GS (2017) Genome editing approaches: manipulating of lovastatin and taxol synthesis of filamentous fungi by CRISPR/Cas9 system. Appl Microbiol Biotechnol 101(10):3953–3976

    Article  CAS  Google Scholar 

  28. Tian WJ, Dou GM, Wang S, Sun JY, Ma YC (2019) Establishment of a CRISPR/Cas9-mediated gene cluster-knockout system in the endophytic streptomyces SAT1. Biotechnol Bull 35(6):1

    CAS  Google Scholar 

  29. Florea S, Jaromczyk J, Schardl CL (2021) Non-transgenic CRISPR-mediated knockout of entire ergot alkaloid gene clusters in slow-growing asexual polyploid fungi. Toxins 13(2):153

    Article  CAS  Google Scholar 

  30. Huang PW, Yang Q, Zhu YL, Zhou J, Sun K, Mei YZ, Dai CC (2020) The construction of CRISPR-Cas9 system for endophytic Phomopsis liquidambaris and its PmkkA-deficient mutant revealing the effect on rice. Fungal Genet Biol 136:103301

    Article  CAS  Google Scholar 

  31. Xu X, Huang R, Yin WB (2021) An optimized and efficient CRISPR/Cas9 system for the endophytic fungus Pestalotiopsis fici. J Fungi 7(10):809

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by DST-WOS B (DST/WOSB/2018/1858) given to KC. Authors clarify non-existence of any potential conflict of interest related with present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanika Chowdhary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhary, K., Arora, H. & Sharma, S. CRISPR/Cas9-Based Genome Editing as a Way Ahead for Inducing Production of Bioactive Metabolites in Endophytes. Natl. Acad. Sci. Lett. 45, 275–280 (2022). https://doi.org/10.1007/s40009-022-01107-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40009-022-01107-9

Keywords