Abstract
The relationship between Randić index, sumconnectivity index, harmonic index and \(\pi \)electron energy of some benzenoid hydrocarbons is obtained.
This is a preview of subscription content, log in to check access.
Abbreviations
 n :

Number of observations of X and Y
 X[n]:

Array containing n values of predictor variable
 Y[n]:

Array containing n values of response variable
 SX :

Sum of all values of predictor
 SY :

Sum of all values of response
 \(SX^2\) :

Sum of squared X’s
 \(SY^2\) :

Sum of squared Y’s
 SXY :

Sum of product of X’s and Y’s
 \({\overline{X}}\) :

Mean of X’s
 \({\overline{Y}}\) :

Mean of Y’s
 SSXX :

Sum of squares for each X observation
 SSXY :

Sum of squares due to the pair X and Y
 \(c_0\) and \(c_1\) :

Regression coefficients
 R :

Correlation coefficient
References
 1.
Kier L, Hall L (1976) Molecular connectivity in chemistry and drug research. Academic Press, New York
 2.
Kier L, Hall L (1986) Molecular connectivity in structure activity analysis. Wiley, New York
 3.
Pogliani L (2000) From molecular connectivity indices to semiempirical connectivity terms: recent trends in graph theoretical descriptors. Chem Rev 100:3827–3858
 4.
Todeschini R, Consonni V (2000) Handbook of molecular descriptors. WileyVCH, Weinheim
 5.
GarcíaDomenech R, Gálvez J, de JuliánOrtiz J, Pogliani L (2008) Some new trends in chemical graph theory. Chem Rev 105:1127–1169
 6.
Li X, Gutman I (2006) Mathematical aspects of Randićtype molecular structure descriptors. University of Kragujevac, Kragujevac
 7.
Li X, Shi Y (2008) A survey on the Randić index. MATCH Commun Math Comput Chem 59:127–156
 8.
Harary F (1969) Graph theory. AddisonWesley, Reading
 9.
Randić M (1975) On characterization of molecular branching. J Am Chem Soc 97:6609–6615
 10.
Zhou B, Trinajstić N (2009) On a novel connectivity index. J Math Chem 46:1252–1270
 11.
Lučić B, Trinajstić N, Zhou B (2009) Comparison between the sumconnectivity index and productconnectivity index for benzenoid hydrocarbons. Chem Phys Lett 475:146–148
 12.
Lučić B, Sović I, Batista J, Skala K, Plavšić D, VikićTopić D, Bešlo D, Nikolić S, Trinajstić N (2013) The sumconnectivity index—an additive variant of Randić connectivity index. Curr Comput Aided Drug Des 9:184–194
 13.
Fajtlowicz S (1987) On conjectures of GraffitiII. Congr Numer 60:187–197
 14.
Deng H, Balachandran S, Ayyaswamy S, Venkatakrishnan Y (2013) On the harmonic index and the chromatic number of a graph. Discrete Appl Math 161:2740–2744
 15.
Gutman I (1978) The energy of a graph. Ber Math Stat Sekt Forschungsz Graz 103:1–22
 16.
Gutman I, Polonsky O (1986) Mathematical concepts in organic chemistry. Springer, Berlin
 17.
Li X, Shi Y, Gutman I (2012) Graph energy. Springer, New York
 18.
Gutman I, Cyvin S (1989) Introduction to the theory of benzenoid hydrocarbons. Springer, Berlin
 19.
Coulson C, Streitwieser A (1965) Dictionary of \(\pi \)electron calculations. Freeman, San Francisco
 20.
Dias J (1987) Handbook of polycyclic hydrocarbons, part A: benzenoid hydrocarbons. Elsevier, Amsterdam
Acknowledgements
We are thankful to the anonymous referees for their helpful suggestions and bringing our attention to Ref. [12].
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was supported by the University Grants Commission (UGC), Govt. of India, through research grant under UPE FARII Grant No. F 143/2012 (NS/PE).
Second author V. B. Joshi died on 18 January 2018.
Rights and permissions
About this article
Cite this article
Ramane, H.S., Joshi, V.B., Jummannaver, R.B. et al. Relationship Between Randić Index, SumConnectivity Index, Harmonic Index and \(\pi \)Electron Energy for Benzenoid Hydrocarbons. Natl. Acad. Sci. Lett. 42, 519–524 (2019). https://doi.org/10.1007/s400090190782y
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
 Benzenoid hydrocarbons
 Randić index
 Sumconnectivity index
 Harmonic index
 \(\pi \)Electron energy
 Correlation
 Regression
Mathematics Subject Classification
 92E10
 05C07