L(D, 2, 1)-labeling of Square Grid

Abstract

For a fixed integer \(D (\ge 3)\) and \(\lambda \)\(\in \)\({\mathbb {Z}}^+\), a \(\lambda \)-L(D, 2, 1)-labeling of a graph \(G = (V, E)\) is the problem of assigning non-negative integers (known as labels) from the set \(\{0, \ldots , \lambda \}\) to the vertices of G such that if any two vertices in V are one, two and three distance apart from each other, then the assigned labels to these vertices must have a difference of at least D, 2 and 1, respectively. The vertices which are at least 4 distance apart can receive the same label. The minimum value among all the possible values of \(\lambda \) for which there exists a \(\lambda \)-L(D, 2, 1)-labeling is known as the labeling number. In this paper, \(\lambda \)-L(D, 2, 1)-labeling of square grid is considered. The lower bound on the labeling number for square grid is presented, and a formula for \(\lambda \)-L(D, 2, 1)-labeling of square grid is proposed. The correctness proof of the proposed formula is given here. The upper bound of the labeling number obtained from the proposed labeling formula for square grid matches exactly with the lower bound of the labeling number.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Atta S, Goldstein S, Mahapatra PRS (2017) No-hole \(\lambda \)-L (k, k - 1,., 2, 1)-labeling for square grid. Bulletin de la Société des Sciences et des Lettres de Łódź Série: Recherches sur les Déformations 67(3):9–19

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Bertossi AA, Pinotti CM, Tan RB (2003) Channel assignment with separation for interference avoidance in wireless networks. IEEE Trans Parallel Distrib Syst 14(3):222–235

    Article  Google Scholar 

  3. 3.

    Bodlaender HL, Kloks T, Tan RB, van Leeuwen J (2000) \(\lambda \)-coloring of graphs. In: Annual symposium on theoretical aspects of computer science, Springer, pp 395–406

  4. 4.

    Calamoneri T, Fusco EG, Tan RB, Vocca P (2006) L (h, 1, 1)-labeling of outerplanar graphs. In: International colloquium on structural information and communication complexity, Springer, pp 268–279

  5. 5.

    Chang GJ, Kuo D (1996) The L(2,1)-labeling problem on graphs. SIAM J Discrete Math 9(2):309–316

    MathSciNet  Article  Google Scholar 

  6. 6.

    Chang GJ, Lu C (2003) Distance-two labelings of graphs. Eur J Comb 24(1):53–58

    MathSciNet  Article  Google Scholar 

  7. 7.

    Chia ML, Kuo D, Liao H, Yang CH, Yeh RK (2011) L (3, 2, 1) labeling of graphs. Taiwan J Math 15(6):2439–2457

    Article  Google Scholar 

  8. 8.

    Clipperton J, Gehrtz J, Szaniszlo Z, Torkornoo D (2006) L (d, 2, 1)-Labeling of simple graphs. VERUM, Valparaiso University

  9. 9.

    Clipperton J, Gehrtz J, Szaniszlo Z, Torkornoo D (2006) L(3, 2, 1)-labeling of simple graphs. VERUM, Valparaiso University

  10. 10.

    Das S, Ghosh SC, Nandi S (2017) Optimal L (3, 2, 1)-labeling of triangular lattice. Discrete Appl Math 228:32–40

    MathSciNet  Article  Google Scholar 

  11. 11.

    Duan Z, Miao L, Wang C, Miao Z (2013) L (p, 2, 1)-labeling of the infinite regular trees. Discrete Math 313(20):2330–2336

    MathSciNet  Article  Google Scholar 

  12. 12.

    Duan Z, Miao Z, Miao L (2009) L (d, 1, 1)-labeling of graphs. J Jilin Univ (Sci Edit) 6:006

    MATH  Google Scholar 

  13. 13.

    Duan Z, Lv P, Miao L, Miao Z (2010) Optimal channel assignment for wireless networks modelled as hexagonal and square grids. In: 2010 second international conference on networks security wireless communications and trusted computing (NSWCTC), vol 2. IEEE, pp 85–88

  14. 14.

    Dubhashi A, Shashanka MV, Pati A, Shashank R, Shende AM (2002) Channel assignment for wireless networks modelled as d-dimensional square grids. In: International workshop on distributed computing. Springer, pp 130–141

  15. 15.

    Griggs JR, Yeh RK (1992) Labelling graphs with a condition at distance 2. SIAM J Discrete Math 5(4):586–595

    MathSciNet  Article  Google Scholar 

  16. 16.

    Hale WK (1980) Frequency assignment: theory and applications. Proc IEEE 68(12):1497–1514

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Soumen Atta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Atta, S., Sinha Mahapatra, P.R. L(D, 2, 1)-labeling of Square Grid. Natl. Acad. Sci. Lett. 42, 485–487 (2019). https://doi.org/10.1007/s40009-018-0780-5

Download citation

Keywords

  • Graph labeling
  • Square grid
  • Labeling number
  • Frequency assignment problem (FAP)